1. Find the principal argument $\text{Arg}(z)$ when

(a) $z = \frac{i}{-2-2i}$

$i = e^{i\frac{\pi}{2}}$, and $-2-2i = 2(-1-i)$. So, $\text{arg } i = \frac{\pi}{2} + 2k\pi$, and $\text{arg } (-2-2i) = -\frac{3\pi}{4} + 2m\pi$

Hence, $\text{arg } \left(\frac{i}{-2-2i}\right) = \text{arg } i - \text{arg } (-2-2i) = \frac{\pi}{2} + 2k\pi - \left(-\frac{3\pi}{4} + 2m\pi\right) = \frac{5\pi}{4} + 2(k-m)\pi$

Finally, since $\text{Arg}(z)$ needs to be between $-\pi$ and π, $\text{Arg}\left(\frac{i}{-2-2i}\right) = -\frac{3\pi}{4}$

(b) $z = (\sqrt{3} + i)^6$

$|\sqrt{3} + i| = 2$, so $z = 2\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)$ and $\sqrt{3} = \cos \phi$, $\frac{i}{2} = \sin \phi$. So $\phi = \frac{\pi}{6}$ and $\sqrt{3} + i = 2e^{i\frac{\pi}{6}}$

So, $\text{arg } (\sqrt{3} + i)^6 = 6 \text{ arg } (\sqrt{3} + i) = 6\left(\frac{\pi}{6} + 2k\pi\right) = (\pi + 2k\pi)$ and $\text{Arg } (\sqrt{3} + i) = \pi$

1. Show that

(a) $|e^{i\theta}| = 1$

$|e^{i\theta}| = |\cos \theta + i \sin \theta| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$

(b) $e^{i\theta} = e^{-i\theta}$

The left hand side (LHS) is $(\cos \theta + i \sin \theta) = \cos \theta - i \sin \theta = \cos(-\theta) + i \sin(-\theta) = e^{i(-\theta)} = e^{-i\theta}$, which is the right hand side (RHS) of the equality

5. Use de Moivre formula (Sec. 7) to derive the following trig identities

(a) $\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta$

De Moivre formula gives

$(\cos \theta + i \sin \theta)^3 = \cos 3\theta + i \sin 3\theta$

On the other hand, the binomial formula gives

$(\cos \theta + i \sin \theta)^3 = \cos^3 \theta + i3\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i \sin^3 \theta$

$= \cos^3 \theta - 3 \cos \theta \sin^2 \theta + i (3 \cos^2 \theta \sin \theta - \sin^3 \theta)$

Equating real parts we obtain that

$\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta$
(b) \(\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta \)

Equating the imaginary parts above we obtain \(b \),

6. By writing the individual factors on the left in exponential form, performing the needed operations and finally changing back to rectangular coordinates, show that

(a) \(i \left(1 - i\sqrt{3} \right) \left(\sqrt{3} + i \right) = 2 \left(1 + i\sqrt{3} \right) \)

\[i = e^{i\frac{\pi}{6}}, \quad |1 - i\sqrt{3}| = 2 = |\sqrt{3} + i|, \text{ so } 1 - i\sqrt{3} = 2 \left(\frac{1}{2} - i\frac{\sqrt{3}}{2} \right) \text{ and } \sqrt{3} + i = 2 \left(\frac{\sqrt{3}}{2} + i\frac{1}{2} \right) \]

So,

\[
i \left(1 - i\sqrt{3} \right) \left(\sqrt{3} + i \right) = e^{i\frac{\pi}{6}} 2 \left(\frac{1}{2} - i\frac{\sqrt{3}}{2} \right) 2 \left(\frac{\sqrt{3}}{2} + i\frac{1}{2} \right) = \]

\[= e^{i\frac{\pi}{6}} 2 \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \]

\[= e^{i\frac{\pi}{6}} 2 e^{-i\frac{\pi}{6}} e^{i\frac{\pi}{6}} = 4 e^{i\frac{\pi}{6}} = 4 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \]

\[= 4 \left(\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) = 2 \left(1 + i\sqrt{3} \right) \]

(b) \(\frac{5i}{2+i} = 1 + 2i \)

Done in class

7. Show that if Re \(z_1 > 0 \) and Re \(z_2 > 0 \) then \(\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \)

Note that if Re \(z_i > 0 \) then \(-\frac{\pi}{2} < \arg(z_i) < \frac{\pi}{2} \). But then, adding both inequalities,

\[-\frac{\pi}{2} < \arg(z_1) < \frac{\pi}{2} \]

\[-\frac{\pi}{2} < \arg(z_2) < \frac{\pi}{2} \]

\[-\pi < \arg(z_1) + \arg(z_2) < \pi \]

Since \(\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \), and \(\arg(z_1 z_2) \) is the unique value or \(\arg(z_1 z_2) \) between \(-\pi\) and \(\pi \), then

\[\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \]

8. Let \(z \) be a non zero complex number and \(n \) a negative integer (\(n = -1, -2, \ldots \)). Also write \(z = re^{i\theta} \) and \(m = -n = 1, 2, \ldots \). Using the expressions

\[z^m = r^m e^{im\theta} \quad \text{and} \quad z^{-1} = \frac{1}{r} e^{i(-\theta)} \]

verify that

\[(z^m)^{-1} = (z^{-1})^m \]
and hence that the definition $z^n = (z^{-1})^m$ in Sec 7 could have been written alternatively as $z^n = (z^m)^{-1}$

Solution:

$$ (z^{-1})^m = \left(\frac{1}{r} e^{i(-\theta)} \right)^m = \left(\frac{1}{r^m} e^{i(-\theta)m} \right) = \frac{1}{r^m} e^{i(-\theta)m} = (r^m)^{-1} (e^{im\theta})^{-1} = (r^m e^{im\theta})^{-1} = (z^m)^{-1} $$

So, $z^n = (z^{-1})^m = (z^m)^{-1}$

Sections 8 and 9.

3. Done in a handout

4. Show that if $z_0 = -4\sqrt{2} + 4\sqrt{2}i$, then the principal value of the cube root of z_0 is $c_0 = \sqrt{2}(1 + i)$ and

$$ c_1 = c_0 \omega_3 = \frac{-\left(\sqrt{3} + 1\right) + \left(\sqrt{3} + 1\right) i}{\sqrt{2}} \quad c_2 = c_0 \omega_3 = \frac{\left(\sqrt{3} + 1\right) - \left(\sqrt{3} + 1\right) i}{\sqrt{2}} $$

Note that $z_0 = 8 \left(\frac{1}{\sqrt{2}} + \frac{1}{i\sqrt{2}} \right) = 8 \exp i \left(\frac{3\pi}{4} + 2k\pi \right)$. So,

$$ z^{\frac{1}{3}} = \left\{ 8^{\frac{1}{3}} \exp i \left(\frac{\pi}{4} + \frac{2k\pi}{3} \right) \right\}, \quad k = 0, 1, 3 $$

and the principal value of the cube roots of z_0 is

$$ c_0 = 2 \exp i \frac{\pi}{4} = 2 \left(\frac{1}{\sqrt{2}} + \frac{1}{i\sqrt{2}} \right) = \sqrt{2}(1 + i) $$

which is the first assertion of the problem.

Now to obtain the rest of the roots, we have

$$ c_1 = 2 \exp i \left(\frac{\pi}{4} + \frac{2\pi}{3} \right) = 2 \exp i \frac{\pi}{4} \exp i \frac{2\pi}{3} $$

But the two exponentials on the RHS are c_0 and ω_3, which is the second cube root of $z = 1$. Moreover,

$$ \omega_3 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{i}{2} \frac{\sqrt{3}}{2} $$

So,

$$ c_1 = c_0 \omega_3 = \sqrt{2}(1 + i) \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} \right) = -\left(\frac{\sqrt{3} + 1}{2} \right) + \frac{\sqrt{3} + 1}{2} i $$

The argument for c_2 is similar.
8. (a) Prove that the usual formula solves the quadratic equation $az^2 + bz + c = 0 \ (a \neq 0)$ when the coefficients a, b, c are complex numbers. (Complete the square on the left hand side to derive the formula)

$$z = \frac{-b \pm (b^2 - 4ac)^{1/2}}{2a}$$

where both square roots are to be considered when $b^2 - 4ac \neq 0$).

Solution: Completing the square we have

$$az^2 + bz + c = a \left(z^2 + \frac{b}{a}z + \frac{c}{a} \right) = a \left[\left(z + \frac{b}{2a} \right)^2 + \frac{c}{a} - \frac{b^2}{4a^2} \right]$$

So, $az^2 + bz + c = 0$ implies that

$$a \left[\left(z + \frac{b}{2a} \right)^2 + \frac{c}{a} - \frac{b^2}{4a^2} \right] = 0$$

or

$$\left(z + \frac{b}{2a} \right)^2 + \frac{c}{a} - \frac{b^2}{4a^2} = 0$$

Then

$$\left(z + \frac{b}{2a} \right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} = \frac{b^2 - 4ac}{4a^2}$$

$$z + \frac{b}{2a} = \left(\frac{b^2 - 4ac}{4a^2} \right)^{1/2} = \frac{(b^2 - 4ac)^{1/2}}{(4a^2)^{1/2}}$$

But if w is any complex number, then $w^{1/2} = \pm z$ where $z^2 = w$. So,

$$z + \frac{b}{2a} = \pm \frac{(b^2 - 4ac)^{1/2}}{ \pm 2a} = \pm \frac{(b^2 - 4ac)^{1/2}}{2a}$$

So,

$$z = \frac{-b \pm (b^2 - 4ac)^{1/2}}{2a}$$

$$z = \frac{-b \pm (b^2 - 4ac)^{1/2}}{2a}$$