Math 372B, HW 3

Please turn in at least 3 solutions by Thursday, 3/26.

1. a) Prove the following alternate form of the splitting principle: For any \(n \geq 1 \), the map

\[
\text{Gr}_1(\mathbb{C}^\infty) \times \cdots \times \text{Gr}_n(\mathbb{C}^\infty) \overset{\alpha}{\to} \text{Gr}_n(\mathbb{C}^\infty)
\]

classifying the complex \(n \)-plane bundle \(\gamma_1 \times \cdots \times \gamma_n \) induces an injection on integral cohomology. (Hint: use the projective bundle theorem.)

b) Deduce that there can be no algebraic relations amongst the elementary symmetric polynomials. (Think about \(x^*(C_i(y_n)) \in H^*(\text{Gr}_i(\mathbb{C}^\infty), \mathbb{Z}) \), where \(x \) is the map in (A).

c) Deduce that if \(\sum_{i=1}^n n_i = n \), then the classifying map for \(\gamma_{n_1} \times \cdots \times \gamma_{n_n} \) induces an injection on \(H^*(-, \mathbb{Z}) \).

2. (Some computative)

a) Show that the Stiefel-Whitney classes of the tangent bundle \(T(S^n) \) are all trivial. (Hint: consider the normal bundle, i.e., the orthogonal complement of \(T S^n \subseteq T R^{n+1} \).

b) Show that if \(M \) is an orientable manifold, then \(w_i(T M) = 0 \). (Hint: use our alternative defn of \(w_i \) involving loops.)

c) Show that if \(M \) is a 2-dimensional orientable manifold (so \(M = M^2 = \bigvee_{i=1}^k S^{2i} \)) then \(w_1(T M) = w_2(M) = 0 \).
3. Let E and F be complex 2-plane bundles over X.

Compute $c_i(E \otimes F)$ via the Splitting Principle (your answer should be some formula in terms of $c_i E$ and $c_i F$).

2. Problems involving the Chern Character:

4. Show that if M^{2n+1} is an odd dimensional, closed, orientable manifold, then $K^0(M)$ and $K^*(M)$ have the same rank.

5. Show that if $H^{2n-1}(X; \mathbb{Q}) \neq 0$, then there exists a complex vector bundle $E \to X$ with $c_1(E) \neq 0$ such that $H^{2n}(X; \mathbb{Z}) \cong H^{2n-1}(X; \mathbb{Z})$.

6. Prove that if $f: X \to Y$ is a morphism of finite CW-complexes which induces an injection

$$H^n(Y; \mathbb{Z}) \xrightarrow{f^*} H^n(X; \mathbb{Z})$$

then it induces an injection

$$H^*(Y; \mathbb{Q}) \xrightarrow{f^*} H^*(X; \mathbb{Q}).$$

(Hint: show that f^* can be identified (naturally) with

$$H^*(Y; \mathbb{Z}) \otimes \mathbb{Q} \xrightarrow{f_* \otimes \mathbb{Q}} H^*(X; \mathbb{Z}) \otimes \mathbb{Q},$$

the result then follows from the fact that \mathbb{Q} is a "Flat" \mathbb{Z}-module.

(Hint: The Unwinding Theorem for chain complexes of finitely generated free objects applies equally well for cochain complexes of such.)