Mathematics 601
Homework Assignment #3

Work any four of the following problems. These are due on Monday 3 December.

1. Let C be a code over \mathbb{F}_q described as the nullspace of a matrix H. Let n be a positive integer and let C' be the nullspace of H viewed as a code over \mathbb{F}_q^n. Prove that $C = C'|_{\mathbb{F}_q}$. Also, show that the distance of C is equal to the distance of C'.

2. Let H be a parity check matrix for a code C. If $\{v_1, \ldots, v_k\}$ is a basis for the nullspace of H, prove that the matrix G whose rows are v_1, \ldots, v_k is a generator matrix for C.

Likewise, if you start with a generator matrix G, and if $\{w_1, \ldots, w_{n-k}\}$ form a basis for the nullspace of G, show that the matrix H whose rows are w_1, \ldots, w_{n-k} is a parity check matrix for H.

(The first fact was used to write for the procedure GeneratorMatrix in the worksheet Codes.mws).

3. Let $f = x^2 - xy + y^2 + 1$, and let $F = \mathbb{F}_3(\overline{x}, \overline{y})$ be the function field of the affine curve $Z(f)$ over \mathbb{F}_3.

 (a) Show that f is irreducible in $\mathbb{F}_3[x, y]$ (so the function field of f does exist).

 (b) Show that f factors in $\mathbb{F}_9[x, y]$. Recall that $\mathbb{F}_9 = \mathbb{F}_3(\alpha)$, where $\alpha^2 = -1$.

 (c) Show that the exact field of constants of F/\mathbb{F}_3 is \mathbb{F}_9. (Hint: show that $F = \mathbb{F}_9(\overline{x})$).

4. Let r be a positive integer, and consider the Galois group $G = \text{Gal}(\mathbb{F}_{q^r}/\mathbb{F}_q)$. For $\sigma \in G$, let σ act on the vector space $\mathbb{F}_{q^r}^n$ of n-tuples over \mathbb{F}_{q^r} by $\sigma((a_1, \ldots, a_n)) = ((\sigma(a_1)), \ldots, (\sigma(a_n)))$.

 (a) Show that $\sigma(v + w) = \sigma(v) + \sigma(w)$ and $\sigma(\alpha v) = \sigma(\alpha)\sigma(v)$ for any $v, w \in \mathbb{F}_{q^r}^n$ and $\alpha \in \mathbb{F}_{q^r}$.

 (b) Let C be a code of length n over \mathbb{F}_{q^r}, and suppose that $\sigma(C) = C$ for all $\sigma \in G$.

 Show that $C|_{\mathbb{F}_q} = \{v \in C : \sigma(v) = v \text{ for all } \sigma \in G\}$.

 (c) If $\dim_{\mathbb{F}_q}(C|_{\mathbb{F}_q}) = \dim_{\mathbb{F}_{q^r}}(C)$, show that $\sigma(C) = C$ for all $\sigma \in G$.

 (d) Extra Credit: if $\sigma(C) = C$ for all $\sigma \in C$, show that $\dim_{\mathbb{F}_q}(C|_{\mathbb{F}_q}) = \dim_{\mathbb{F}_{q^r}}(C)$.

1
5. Let C be the rational Goppa code $C_L(D,G)$ over \mathbb{F}_8, where $G = 4P_\infty$ and $D = P_{\alpha_1} + \cdots + P_{\alpha_8}$, where P_α is the place corresponding to the point $(\alpha : 0 : 1)$. You may view the function field as $\mathbb{F}_8(x)$, the function field of the curve $y = 0$. The divisor D is then the sum of all the rational points other than P_∞. Write out a generator matrix and verify that the distance of this code is 5 with the procedure DistanceG in Codes.mws.

6. Let C be the code $C_L(D,G)$ over \mathbb{F}_{64} associated to the function field of the Hermitian curve with equation $y^8z + yz^8 = x^9$, where $G = 17P_\infty$ and where D is the sum of the first twenty points that the procedure Ppoints.mws finds. You need to find a sixth degree polynomial to represent \mathbb{F}_{64} (you may use the procedure DefineP in the file MakeGenerator.mws to do this, although using this procedure is not necessary). Determine the dimension of $L(G)$, and write down a generator matrix for C. You will find the procedure MakeGeneratorMatrix in MakeGenerator.mws convenient in writing out a generator matrix, and ChangeMatrix may be helpful to simplify the writing of the matrix.

7. Let X be the curve $y^2z^2 = x^4 + x^2z^2 + 2z^4$ over \mathbb{F}_3. With the help of the procedure Ppoints in POINTS.mws, find the number of points of X of degree 1, degree 2, and degree 4. Pick a point of degree 2 and one of degree 4 and find all the conjugates of the given point. The conjugates of a point P are the points $\{\sigma(P) : \sigma \in \text{Gal}(K/\mathbb{F}_3)\}$ if the coordinates of P lie in the field K.

(Note: X is an example of a curve with two points at infinity, although this fact is not relevant for the problem.)

8. Let X be the elliptic curve $y^2z = x^3 - xz^2 - z^3$ over \mathbb{F}_3. With the help of Points.mws, determine the number of places (not points!) of degree 2 and degree 3 of the function field of X.

9. Let X be the Hermitian curve $y^8z + yz^8 = x^9$ over \mathbb{F}_{64}. Calculate the divisor of the function $(x + y)/z$.

(Hint: find all the \mathbb{F}_{64}-points of the curve with Ppoints in the worksheet POINTS.mws. which will enter a list called Points into memory. (Since there are 513 such points, it will take Maple a little while to do this.) Search the list to find those with $y = x$. Since the list will be long, use the Maple code $\text{for i from 1 to 513 do if Points[i][1]=Points[i][2] then print(Points[i]) fi end do}$ (all one line). You should ask yourself why only knowing the \mathbb{F}_{64}-rational points of the curve is enough to find the divisor of $(x + y)/z$.

10. Let X be the elliptic curve $y^2z = x^3 - z^3$ over \mathbb{F}_5. Calculate the divisor of the function $(2x + y)/z$.
