Every graph is assumed to be simple, unless otherwise stated.

1. A k-chromatic graph G (i.e. $\chi(G) = k$) is called critically k-chromatic or just critical, if $\chi(G - v) < k$ for every $v \in V(G)$. Show that every k-chromatic graph has a critical k-chromatic induced subgraph, and that any such subgraph has minimum degree $\delta \geq k - 1$.

2. Determine the critical 3-chromatic graphs.

3. Let G be a simple graph of order n. Let $e = e(G)$ be the number of edges. Prove that $\chi(G) \geq \frac{n^2}{n^2 - 2e}$.

4. Find the edge chromatic number of K_n and prove your answer.

5. Let G_1, G_2 be two graphs. Consider their join $G_1 + G_2$. Prove that

 (a) $\chi(G_1 + G_2) = \chi(G_1) + \chi(G_2)$

 (b) G_1 and G_2 are critical if and only if $G_1 + G_2$ is.

6. Give an example of a graph G for which $\alpha(G) = k(G)$ and $\omega(G) < \chi(G)$. Why does this not contradict the Perfect Graph theorem?

7. Suppose that G satisfies $\alpha(G) = k(G)$. Let \mathcal{K} be the clique cover of G where $|\mathcal{K}| = k(G)$, and let \mathcal{A} be the collection of all independent sets of cardinality $\alpha(G)$. Show that

 $|A \cap K| = 1$ for all $A \in \mathcal{A}$ and $K \in \mathcal{K}$.

 Give a dual statement for a graph satisfying $\omega(G) = \chi(G)$.

Extra Problems for Graduate Students:

8. Show that if any two odd cycles of a graph G have a vertex in common then $\chi(G) \leq 5$.

9. Prove that the only regular graph of degree $n \geq 3$ which is $(n + 1)$-chromatic is K_{n+1}.