Every graph is assumed to be simple, unless otherwise stated.

1. Find $\omega(K_4)$ and $\omega(K_5)$. Prove your answer.

2. Prove that the least number of vertices in a cubic graph with a bridge is 10.

3. Let G be a block with $\delta \geq 3$. Prove that there exists a vertex v such that $G - v$ is also a block.

4. Prove or disprove: The number of cliques of a graph G does not exceed $\omega(G)$.

5. Characterize the adjacency matrix of a bipartite graph.

6. Let G be a connected graph with adjacency matrix A. What can be said about A if:

 (a) v_i is a cutvertex?
 (b) v_i, v_j is a bridge?

Extra Problems for Graduate Students:

7. Let $b(v)$ be the number of blocks to which a vertex v belongs in a connected graph G. Then the number of blocks of G is given by

 $$b(G) - 1 = \sum_{v \in V(G)} (b(v) - 1),$$

 where $b(G)$ is the number of blocks of G.