1. Find all normal subgroups of the dihedral group D_{12}. Prove your claims.

2. Let G be a group of order p^α for some $\alpha \geq 0$ and p a prime number. Show that G has a normal group of order n for every divisor n of the order of the group.

3. Let G be a finite group acting transitively on a finite set S with $|S| \geq 2$. Prove that there exists an element $g \in G$ which does not have any fixed points, i.e. $g \cdot s \neq s$ for all $s \in S$.

4. Let G be a finite group.
 (i) Prove that elements in the same conjugacy class have conjugate centralizers.
 (ii) If c_1, \ldots, c_r are the orders of the centralizers of elements from the distinct conjugacy classes prove that
 \[
 \frac{1}{c_1} + \ldots + \frac{1}{c_r} = 1.
 \]

5. Let H be a proper subgroup of a finite group G. Show that G is not the union of all the conjugates of H.