1. Let G be a finite group, let H be a subgroup of G and let $N \leq G$. Prove that if $|H|$ and $|G : N|$ are relatively prime then $H \leq N$.

2. Prove that if N is a normal subgroup of a finite group G and $(|N|, |G : N|) = 1$ then N is the unique subgroup of G of order $|N|$.

3. Let p be a prime and let G be a group of order $p^a m$, where p does not divide m. Assume P is a subgroup of G of order p^a and N is a normal subgroup of G of order $p^b n$, where p does not divide n. Prove that $|P \cap N| = p^b$ and $|PN / N| = p^{a-b}$. [The subgroup P of G is called a Sylow p-subgroup of G.]

4. Prove that $S_n = < (12), (12 \ldots n) >$.

5. Prove that A_n contains a subgroup isomorphic to S_{n-2} for all $n \geq 3$.