1. Let \(f : (2,7) \rightarrow \mathbb{R} \) be defined by \(f(x) = x^3 - x + 1 \). Use the definition of uniform continuity to show that \(f \) is uniformly continuous on \((2,7)\).

2. Let \(f : [3.4,5] \rightarrow \mathbb{R} \) be defined by \(f(x) = \frac{2}{x^3} \). Use the definition of uniform continuity to show that \(f \) is uniformly continuous on \([3.4,5]\).

3. Let \(I \) be an interval and let \(f \) and \(g \) be uniformly continuous on \(I \). Use the definition of uniform continuity to show that \(f + g \) is uniformly continuous on \(I \).

4. Let \(f \) and \(g \) be uniformly continuous on an interval \(I = [a,b] \). Use the definition of uniform continuity to show that \(fg \) is uniformly continuous on \(I \).

5. Let \(I, J \subset \mathbb{R} \) be intervals, \(f : I \rightarrow \mathbb{R} \) and \(g : J \rightarrow \mathbb{R} \) with \(\text{Im} f \subset J \). Prove that if \(f \) is uniformly continuous on \(I \) and \(g \) is uniformly continuous on \(J \) then \(g \circ f \) is uniformly continuous on \(I \).