1. 6 pts) Consider the following predator-prey system
\[
\frac{dR}{dt} = 3R - 1.6RF
\]
\[
\frac{dF}{dt} = -F + 2RF.
\]
Modify this system to include the effect of hunting the prey at a rate proportional to the number of predators.
\[
\frac{dR}{dt} = 3R - 1.6RF - kF
\]
\[
\frac{dF}{dt} = -F + 2RF
\]
\[k: \text{ constant of proportionality for hunting}\]
\[k > 0\]
2. (6 pts) Determine which of the following differential equation corresponds to the vector field given. No explanation is needed.

\[
(i) \quad \frac{dx}{dt} = y - 1 \quad (ii) \quad \frac{dx}{dt} = x + 2y \quad (iii) \quad \frac{dx}{dt} = x^2 - 1 \\
\frac{dy}{dt} = -x - 1 \quad \frac{dy}{dt} = -y \quad \frac{dy}{dt} = -y
\]

When \(x = -1 \) \(y = 1 \), then \(\frac{dx}{dt} = 0 \) and \(\frac{dy}{dt} < 0 \)

For (i) \(x = -1 \) \(y = 1 \) \(\Rightarrow \) \(\frac{dx}{dt} = 0 \) \(\frac{dy}{dt} = 0 \)

(ii) \(x = -1 \) \(y = 1 \) \(\Rightarrow \) \(\frac{dx}{dt} = -1 + 2 = 1 \neq 0 \)

(iii) \(x = -1 \) \(y = 1 \) \(\Rightarrow \) \(\frac{dx}{dt} = 0 \) \(\frac{dy}{dt} = -1 < 0 \)

\[2 \quad \text{So (iii)} \]
3. (8 pts) Find the general solution for the following differential equation:
\[\frac{dy}{dt} = -2ty + t. \]

\[\frac{dy}{dt} + 2ty = t \]

\[\mu(t) = e^{t^2} \]

\[y(t) = \frac{1}{e^{t^2}} \int e^{t^2} t \, dt \]

\[= \frac{1}{e^{t^2}} \int e^{u} \cdot \frac{1}{2} \, du \]

\[= \frac{1}{2} e^{-t^2} \left[e^u + C_1 \right] \]

\[= \frac{1}{2} e^{-t^2} \left[e^{t^2} + C_1 \right] \]

\[= \frac{1}{2} e^{-t^2} t^2 + C_1 e^{-t^2} \]

Let \(C = \frac{C_1}{2} \)

\[\Rightarrow y(t) = \frac{1}{2} + C e^{-t^2} \]