Recent progress on time and band limiting
SIAM Minisymposium, January 2013

Joe Lakey (w Jeff Hogan)1

January 10, 2013
Overview of Issues

Approximation of time and band limited signals from their samples: which ones and how well?

Construction of time- and multi-band limited signals

Application to EEG

Joe Lakey (w Jeff Hogan)

Time- and bandlimiting
Approximation of time and band limited signals from their samples: which ones and how well?
Overview of Issues

Approximation of time and band limited signals from their samples: which ones and how well?
Construction of time- and multi-band limited signals
Overview of Issues

Approximation of time and band limited signals from their samples: which ones and how well?
Construction of time- and multi-band limited signals
Application to EEG
More themes

Essentially, time- and band-limited signals can be approximated on \([-T, T]\) by sinc interpolants of samples on \([-MT, MT]\), where \(M \approx 10(1 + \log T)\).

Essentially, time-limited blue multiband signals can be constructed from each band.

Continuous eigenfunction problem can be reduced to discrete eigenvector problem.
Oversampling. *Essentially* time- and band-limited signals can be approximated on $[-T, T]$ by sinc interpolants of samples on $[-MT, MT]$, $M \approx 10(1 + \log T)$.
Oversampling *Essentially* time- and band-limited signals can be approximated on \([-T, T]\) by sinc interpolants of samples on \([-MT, MT]\), \(M \approx 10(1 + \log T)\). Essentially time-limited bluemultiband signals can be constructed from each band.
Oversampling *Essentially* time- and band-limited signals can be approximated on $[-T, T]$ by $sinc$ interpolants of samples on $[-MT, MT]$, $M \approx 10(1 + \log T)$.

Essentially time-limited bluemultiband signals can be constructed from each band.

Continuous eigenfunction problem can be reduced to discrete eigenvector problem.
Oversampling *Essentially* time- and band-limited signals can be approximated on \([-T, T]\) by \(sinc\) interpolants of samples on \([-MT, MT]\), \(M \approx 10(1 + \log T)\)

Essentially time-limited bluemultiband signals can be constructed from each band.

Continuous eigenfunction problem can be reduced to discrete eigenvector problem

Problems of *ill-conditioning* arise
Timelimiting and bandlimiting

Joe Lakey (w Jeff Hogan)
Bandlimiting

Fourier transform:
\[\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \]

Bandlimiting:
\[P_{\Sigma} f(x) = (\hat{f}_{\Sigma}) \lor (x) \]

Paley-Wiener space:
\[\text{PW}_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \]
Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)
Bandlimiting

Fourier transform: $\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} dt$

Bandlimiting: $P_{\Sigma} f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x)$
Bandlimiting

Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)

Bandlimiting: \(P_\Sigma f(x) = (\hat{f} \, 1_\Sigma) \vee (x) \)

Paley-Wiener space: \(PW_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)
Time and band limiting: Bell Labs Theory

\[
(Pf)(x) = \left[\frac{-1}{2}, \frac{1}{2}\right] \lor (Qf)(x) = 1[\frac{-T}{2}, \frac{T}{2}]
\]

\[
PQ^T P: \text{self-adjoint, } \lambda_{\text{max}} = \lambda_0 = \|PQ^T\| = \sup_{f \in W, \|f\| = 1} \|Q^T(f)\|_2
\]

Uncertainty principle: \(\lambda_{\text{max}} < 1\)
(Pf)(x) = (\hat{f} \mathbb{1}_{[-1/2,1/2]})^\vee(x)
(Pf)(x) = (\hat{f} \mathbb{1}_{[-1/2, 1/2]})^\vee(x)
(Q_T f)(x) = \mathbb{1}_{[-T, T]}(x) f(x)
(Pf)(x) = (\hat{f} \mathbb{1}_{[-1/2, 1/2]})^{\vee}(x)
(Q_T f)(x) = \mathbb{1}_{[-T, T]}(x) f(x)

PQ_T P: self-adjoint,
\((Pf)(x) = (\hat{f} \mathbb{1}_{[-1/2, 1/2]})^\vee(x) \)

\((Q_T f)(x) = \mathbb{1}_{[-T, T]}(x) f(x) \)

\(PQ_T P \): self-adjoint,

\[\lambda_{\text{max}} = \lambda_0 = \|PQ_T\| = \sup_{f \in PW, \|f\| = 1} \|Q_T(f)\|^2 \]
Time and band limiting: Bell Labs Theory

\[(Pf)(x) = (\hat{f} \mathbb{1}_{[-1/2, 1/2]})^\vee(x)\]

\[(Q_T f)(x) = \mathbb{1}_{[-T, T]}(x) f(x)\]

\[PQ_T P: \text{self-adjoint,}\]

\[\lambda_{\text{max}} = \lambda_0 = \|PQ_T\| = \sup_{f \in PW, \|f\|=1} \|Q_T(f)\|^2\]

Uncertainty principle: \(\lambda_{\text{max}} < 1\)
commutes with certain differential operator

Eigenfunctions: Prolate Spheroidal Wave Functions

Energy concentration: ϕ_0, ϕ_1, \ldots are the bandlimited signals that are most time-limited to $[-T, T]$.

$\{\phi_n\}$ forms a complete, orthogonal family in $L^2[-T, T]$.

Joe Lakey (w Jeff Hogan) Time- and bandlimiting
$P_\Omega Q_T$ commutes with certain differential operator . . .
$P_\Omega Q_T$ commutes with certain differential operator …

Eigenfunctions: Prolate Spheroidal Wave Functions
$P_\Omega Q_T$ commutes with certain differential operator …

Eigenfunctions: Prolate Spheroidal Wave Functions

Energy concentration: $\varphi_0, \varphi_1, \ldots$ are the bandlimited signals that are most time-limited to $[-T, T]$
$P_{\Omega} Q_T$ commutes with certain differential operator . . .

Eigenfunctions: Prolate Spheroidal Wave Functions

Energy concentration: $\varphi_0, \varphi_1, \ldots$ are the bandlimited signals that are most time-limited to $[-T, T]$

$\{\varphi_n\}$ forms a complete, orthogonal family in $L^2[-T, T]$.
Plots generated on $[-1, 1]$ using “Bouwkamp’s method”

Figure: φ_n, $n = 0, 3, 10$, $c = \frac{\pi T \Omega}{2} = 5$
Theorem

For any $T > 0$ and $\Omega > 0$ and $0 < \alpha < 1$ the number $N(\alpha)$ of eigenvalues of $P_{\Omega} Q_T$ greater than α satisfies

$$N(\alpha) = 2\Omega T + \left(\frac{1}{\pi^2} \log \frac{1}{1-\alpha} \alpha\right) \log (\Omega T) + o(\log \Omega T).$$
The 2ΩT Theorem

Theorem

For any $T > 0$ and $\Omega > 0$ and $0 < \alpha < 1$ the number $N(\alpha)$ of eigenvalues of $P_\Omega Q_T$ greater than α satisfies

$$N(\alpha) = 2\Omega T$$
Theorem

For any $T > 0$ and $\Omega > 0$ and $0 < \alpha < 1$ the number $N(\alpha)$ of eigenvalues of $P_\Omega Q_T$ greater than α satisfies

$$N(\alpha) = 2\Omega T + \left(\frac{1}{\pi^2} \log \frac{1 - \alpha}{\alpha} \right) \log \left(\Omega T \right)$$
The $2\Omega T$ Theorem

Theorem

For any $T > 0$ and $\Omega > 0$ and $0 < \alpha < 1$ the number $N(\alpha)$ of eigenvalues of $P_{\Omega} Q_T$ greater than α satisfies

$$N(\alpha) = 2\Omega T + \left(\frac{1}{\pi^2} \log \frac{1 - \alpha}{\alpha}\right) \log (\Omega T) + o(\log \Omega T).$$
DFT illustration

Eigenvalues for 1025 points, normalized area of 64

Joe Lakey (w Jeff Hogan)
The classical sampling theorem

Bandlimiting:

\[Pf(x) = (\hat{f}_{1/2}, 1/2) \lor (x) \]

Paley-Wiener space:

\[PW = P(L^2(\mathbb{R})) \]

Sampling theorem: If \(f \in PW \) then, with convergence in your norm here,

\[f(t) = \sum_{k=-\infty}^{\infty} f(k) \sin(\frac{\pi}{t-k}) \]

Joe Lakey (w Jeff Hogan)
The classical sampling theorem

Bandlimiting: $Pf(x) = (\hat{f} 1_{[-1/2, 1/2]})^\vee(x)$
The classical sampling theorem

Bandlimiting: \(Pf(x) = (\hat{f} \mathbb{1}_{[-1/2, 1/2]})^\vee(x) \)

Paley-Wiener space: \(\text{PW} = P(L^2(\mathbb{R})) \)

Sampling theorem: If \(f \in \text{PW} \) then, with convergence in \(\text{your norm here} \),

\[
f(t) = \sum_{k=-\infty}^{\infty} f(k) \frac{\sin \pi(t - k)}{\pi(t - k)}
\]
The classical sampling theorem

Bandlimiting: \(Pf(x) = (\hat{f} \mathbb{1}_{[-1/2, 1/2]})^\dagger(x) \)

Paley-Wiener space: \(\text{PW} = \mathcal{P}(L^2(\mathbb{R})) \)

Sampling theorem: If \(f \in \text{PW} \) then, with convergence in your norm here,

\[
f(t) = \sum_{k=-\infty}^{\infty} f(k) \frac{\sin \pi(t - k)}{\pi(t - k)}
\]
The classical sampling theorem

Bandlimiting: \(Pf(x) = (\hat{f} 1_{[-1/2, 1/2]})^\vee(x) \)

Paley-Wiener space: \(\text{PW} = P(L^2(\mathbb{R})) \)

Sampling theorem: If \(f \in \text{PW} \) then, with convergence in your norm here,

\[
f(t) = \sum_{k=-\infty}^{\infty} f(k) \frac{\sin \pi(t - k)}{\pi(t - k)}
\]
Can a time-limited and band-limited signal be approximated locally by a finite sinc series?
Problem (Statement 1)

Can one approximately recover the projection of \(f \in PW \) onto a subspace of “approximately time- and bandlimited” functions solely from samples near \([-T, T]\)?
Corollary (of Sampling theorem and defn of PSWFs)

If $f \in PW$ then

$$PQ_T f(t) = \sum_{n=0}^{\infty} \lambda_n$$
Corollary (of Sampling theorem and defn of PSWFs)

If $f \in PW$ then

$$PQ_T f(t) = \sum_{n=0}^{\infty} \lambda_n \sum_{k=-\infty}^{\infty} f(k) \varphi_n(k)$$
Corollary (of Sampling theorem and defn of PSWFs)

If \(f \in \text{PW} \) then

\[
PQ_T f(t) = \sum_{n=0}^{\infty} \lambda_n \sum_{k=-\infty}^{\infty} f(k) \varphi_n(k) \varphi_n(t).
\]
Problem (Statement 2)

For suitable $N(T) \approx T$ and $M(T) \approx T$, in what sense is

\[
\text{trunc span}\{\varphi_n : n \leq N(T)\} \\
\approx \text{trunc span}\{\text{sinc}(t - k) : |k| \leq M(T)\}?
\]
\{\varphi_n(k)\} as an eigenvector

Theorem (Walter and Shen; Khare and George, 2003-2004)
\{ \varphi_n(k) \} as an eigenvector

Theorem (Walter and Shen; Khare and George, 2003-2004)

\[\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k); \quad A_{mk} = \int_{-T}^{T} \text{sinc} (t - m) \text{sinc} (t - k) \, dt \]
Quadratic decay of \(\{ \varphi_n(k) \} \)

Shen and Walter’s estimate:

\[
\sum |k| > T \varphi_n^2(k) \leq CT \sqrt{1 - \lambda_n}
\]

Desired estimate (Hogan, Lakey 2010)

\[
\sum |k| > M(T) \varphi_n^2(k) \leq C(1 - \lambda_n);
\]

\(M(T) = T (1 + \pi/2)(1 + \log \gamma T) \)

Estimate uses known decay on Fourier bump functions

Joe Lakey (w Jeff Hogan)
Quadratic decay of \(\{\varphi_n(k)\} \)

Shen and Walter’s estimate:

\[
\sum_{|k| > T} \varphi_2^n(k) \leq CT \sqrt{1 - \lambda_n}.
\]

Desired estimate (Hogan, Lakey 2010)

\[
\sum_{|k| > M(T)} \varphi_2^n(k) \leq C(1 - \lambda_n); \quad M(T) = T(1 + \pi^2)(1 + \log \gamma T).
\]

Estimate uses known decay on Fourier bump functions

Joe Lakey (w Jeff Hogan)

Time- and bandlimiting
Quadratic decay of \(\{ \varphi_n(k) \} \)

Shen and Walter’s estimate:

\[
\sum_{|k| > T} \varphi_n^2(k) \leq CT \sqrt{1 - \lambda_n}
\]
Quadratic decay of \(\{ \varphi_n(k) \} \)

Shen and Walter’s estimate:

\[
\sum_{|k| > T} \varphi_n^2(k) \leq CT \sqrt{1 - \lambda_n}
\]

Desired estimate (Hogan, Lakey 2010)
Quadratic decay of \(\{ \varphi_n(k) \} \)

Shen and Walter’s estimate:

\[
\sum_{|k| > T} \varphi_n^2(k) \leq CT \sqrt{1 - \lambda_n}
\]

Desired estimate (Hogan, Lakey 2010)

\[
\sum_{|k| > M(T)} \varphi_n^2(k) \leq C(1 - \lambda_n); \quad M(T) = T (1 + \pi^2)(1 + \log \gamma T)
\]
Quadratic decay of \(\{ \varphi_n(k) \} \)

Shen and Walter’s estimate:

\[
\sum_{|k| > T} \varphi_n^2(k) \leq CT \sqrt{1 - \lambda_n}
\]

Desired estimate (Hogan, Lakey 2010)

\[
\sum_{|k| > M(T)} \varphi_n^2(k) \leq C(1 - \lambda_n); \quad M(T) = T (1 + \pi^2)(1 + \log^\gamma T)
\]

Estimate uses known decay on Fourier bump functions
Local approximation by sinc series

Projection onto first N prolates: For $f \in \text{PW}$. . .

$$f_N(t) = \sum_{n=0}^{N} \left(\sum_{k} f(k) \varphi_n(k) \right) \varphi_n(t)$$
Local approximation by sinc series

Projection onto first N prolates: For $f \in \text{PW}$...

$$f_N(t) = \sum_{n=0}^{N} \left(\sum_{k} f(k) \varphi_n(k) \right) \varphi_n(t)$$

Local sinc series
Local approximation by sinc series

Projection onto first N prolates: For $f \in PW \ldots$

$$f_N(t) = \sum_{n=0}^{N} \left(\sum_{k} f(k) \varphi_n(k) \right) \varphi_n(t)$$

Local sinc series

$$f_{N,T} = \sum_{n=0}^{N} \left(\sum_{|k| \leq M(T)} f(k) \varphi_n^T(k) \right) \varphi_n^T(t); \varphi_n^T = \sum_{|k| \leq M(T)} \varphi_n(k) \text{sinc}(\cdot - k)$$
Local approximation by sinc series

Projection onto first N prolates: For $f \in \text{PW}$. . .

\[
f_N(t) = \sum_{n=0}^{N} \left(\sum_{k} f(k) \varphi_n(k) \right) \varphi_n(t)
\]

Local sinc series

\[
f_{N,T} = \sum_{n=0}^{N} \left(\sum_{|k| \leq M(T)} f(k) \varphi_n^T(k) \right) \varphi_n^T(t); \varphi_n^T = \sum_{|k| \leq M(T)} \varphi_n(k) \text{sinc}(\cdot-k)
\]

Proposition

\[
\| Q_T (f_N - f_{N,T}) \|^2 \leq \sum_{n=0}^{N} \lambda_n |\langle (f_N - f_{N,T}), \varphi_n \rangle|^2 \leq C \| f \|^2 \sum_{n=0}^{N} \lambda_n (1 - \lambda_n).
\]
Integer samples of PSWFs can be estimated accurately.
Integer samples of PSWFs can be estimated accurately

Karoui and Moumni, (ACHA, 2008):

Legendre Fourier coefficients: values of Bessel functions
Integer samples of PSWFs can be estimated accurately

Karoui and Moumni, (ACHA, 2008):
PSWF samples are integer values of Fourier transforms of $\hat{\phi}_n$
Integer samples of PSWFs can be estimated accurately

Karoui and Moumni, (ACHA, 2008):
PSWF samples are integer values of Fourier transforms of $\tilde{\phi}_n$
$\tilde{\phi}_n$ approximated on $[-1, 1]$ by Legendre series (small c)
Integer samples of PSWFs can be estimated accurately

Karoui and Moumnı, (ACHA, 2008):
PSWF samples are integer values of Fourier transforms of $\hat{\varphi}_n$
$\hat{\varphi}_n$ approximated on $[-1, 1]$ by Legendre series (small c)
Legendre Fourier coefficients: values of Bessel functions
Reconstruction from $M(T)$ versus from T samples, $T = 5$
A more general case: multiband

The $2\Omega T$ theorem for multi bands is similar
A more general case: multiband

The $2\Omega T$ theorem for multi bands is similar. Plunge region width proportional to log area \times number of intervals.
Unions of frequency supports

Proposition

\[\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_M \text{ compact}, \]
Proposition

$\Sigma = \Sigma_1 \uplus \cdots \uplus \Sigma_M$ compact, $\{\varphi_{n}^{\Sigma_{\nu}}\} \sim \lambda_{n}^{\Sigma_{\nu}} \sim P_{\Sigma_{\nu}} Q S P_{\Sigma_{\nu}}$
Proposition

\[\Sigma = \Sigma_1 \uplus \cdots \uplus \Sigma_M \text{ compact, } \{ \phi^\Sigma_n \} \sim \lambda^\Sigma_n \sim P_{\Sigma_\nu} Q_S P_{\Sigma_\nu} \]

\[\Lambda_{\Sigma_\nu} = \text{diag } \lambda^\Sigma_n \]
Proposition

\[\Sigma = \Sigma_1 \uplus \cdots \uplus \Sigma_M \text{ compact}, \{ \varphi^{\Sigma_\nu}_n \} \sim \lambda^{\Sigma_\nu}_n \sim P_{\Sigma_\nu} Q_S P_{\Sigma_\nu} \]

\[\Lambda_{\Sigma_\nu} = \text{diag} \, \lambda^{\Sigma_\nu}_n \]

\[\Gamma^{\nu \mu}: \gamma^{\nu \mu}_{nm} = \langle Q_S \varphi^{\Sigma_\nu}_n, \varphi^{\Sigma_\mu}_m \rangle, \nu \neq \mu. \]
Proposition

\[\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_M \text{ compact}, \{ \varphi_{n}^{\Sigma_{\nu}} \} \sim \lambda_{n}^{\Sigma_{\nu}} \sim P_{\Sigma_{\nu}} Q_{S} P_{\Sigma_{\nu}} \]

\[\Lambda_{\Sigma_{\nu}} = \text{diag} \lambda_{n}^{\Sigma_{\nu}} \]

\[\Gamma^{\nu \mu} : \gamma_{nm}^{\nu \mu} = \langle Q_{S} \varphi_{n}^{\Sigma_{\nu}}, \varphi_{m}^{\Sigma_{\mu}} \rangle, \nu \neq \mu. \]

Eigenvector–eigenvalue pairs \(\psi \) and \(\lambda \) for \(P_{\Sigma} Q_{S} \):
Unions of frequency supports

Proposition

\[\Sigma = \Sigma_1 \uplus \cdots \uplus \Sigma_M \text{ compact}, \{ \varphi_{\Sigma \nu}^n \} \sim \lambda_{\Sigma \nu}^n \sim P_{\Sigma \nu} Q_S P_{\Sigma \nu} \]

\[\Lambda_{\Sigma \nu} = \text{diag} \lambda_{\Sigma \nu}^n \]

\[\Gamma^{\nu \mu} : \gamma_{nm}^{\nu \mu} = \langle Q_S \varphi_{\Sigma \nu}^n, \varphi_{\Sigma \mu}^m \rangle, \nu \neq \mu. \]

Eigenvector–eigenvalue pairs \(\psi \) and \(\lambda \) for \(P_{\Sigma} Q_S \):

\[\psi = \sum_{\nu=1}^M \sum_{n=0}^{\infty} \alpha_{\nu}^n \varphi_{\Sigma \nu}^n ; \]

\[[\alpha_1, \ldots, \alpha_M]^T : \text{discrete eigenvector for the block matrix eigenvalue problem} \]

\[
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_M
\end{pmatrix}
\begin{pmatrix}
\Lambda_{\Sigma 1} & \bar{\Gamma}_{12} & \cdots & \bar{\Gamma}_{1M} \\
(\bar{\Gamma}_{12})^T & \Lambda_{\Sigma 2} & \bar{\Gamma}_{23} & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
(\bar{\Gamma}_{1M})^T & \cdots & (\bar{\Gamma}_{M-1,M})^T & \Lambda_{\Sigma M}
\end{pmatrix}
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_M
\end{pmatrix}.
\]
Figure: Matrix Γ for $T = 2$ and THREE frequency intervals
Calculating cross terms

\[\Gamma_{IJ} = \langle Q_T \phi_I, \phi_J \rangle = \sum_k \phi_n(k) \sum_\ell \phi_m(\ell) A(T; I, J)_{k\ell} \]

\[A(T; I, J)_{k\ell} = \int_{T-T}^{T} e^{2\pi i (m_I - m_J) t} \text{sinc}(t-k) \text{sinc}(t-\ell) dt. \]
Calculating cross terms

\[\Gamma_{n,m}^{I,J} = \langle Q_T \varphi_n^I, \varphi_m^J \rangle = \sum_k \varphi_n(k) \sum_\ell \varphi_m(\ell) A(T; I, J)_{k\ell}; \]

\[A(T; I, J)_{k\ell} = \int_{-T}^{T} e^{2\pi i (m_I - m_J)t} \text{sinc}(t - k)\text{sinc}(t - \ell) \, dt. \]
Calculating cross terms

\[\Gamma_{n,m}^{I,J} = \langle Q_T \varphi_n^{I}, \varphi_m^{J} \rangle = \sum_k \varphi_n(k) \sum_\ell \varphi_m(\ell) A(T; I, J)_{k\ell}; \]

\[A(T; I, J)_{k\ell} = \int_{-T}^{T} e^{2\pi i (m_I - m_J) t} \text{sinc} (t - k) \text{sinc} (t - \ell) \, dt. \]
Proposition

As a bilinear form acting on \(\{ \varphi_n(k) \} \), \(\{ \varphi_m(\ell) \} \),

\[
A(T; I, J)_{k\ell} = i^{n+m} \sqrt{\lambda_m \lambda_n} \text{sinc} (2T(m_J - m_I) + k - \ell).
\]
Proposition

As a bilinear form acting on \(\{ \varphi_n(k) \}, \{ \varphi_m(\ell) \} \),

\[
A(T; I, J)_{k\ell} = i^{n+m} \sqrt{\lambda_m \lambda_n} \text{sinc} (2T(m_J - m_I) + k - \ell).
\]

Drawback: \(\Gamma \) ill-conditioned
Figure: PSWFs for $T = 2$ and $I = [-1/2, 1/2]$. Plot of the first six prolates generated by sinc-interpolating integer samples. The nth prolate has n zeros on $[-T, T]$, $n = 0, 1, \ldots$
Figure: TMBLMs for $T = 2$, $I = [-1/2, 1/2]$ and $J = [2, 3]$ and $K = [5, 6]$. $n = \{0, 1, 2\}, \{3, 4, 5\}$ (three per each basic PSWF mode). Real parts solid.
Special case: Bandpass prolates

Time and bandlimiting
Special case: Bandpass prolates

Time limited to $[-1, 1]$, frequency limited to $c' \leq |\xi| \leq c$.

Joe Lakey (w Jeff Hogan)
Time- and bandlimiting
Special case: Bandpass prolates

Time limited to $[-1, 1]$, frequency limited to $c' \leq |\xi| \leq c$. Fourier covariance: $\hat{\varphi}_n$ is a truncated dilate of φ_n.
Special case: Bandpass prolate

Time limited to $[-1, 1]$, frequency limited to $c' \leq |\xi| \leq c$. Fourier covariance: $\hat{\varphi}_n$ is a truncated dilate of φ_n.

$$R_{jk} = \frac{i^{k-j}}{\sqrt{\lambda_k \lambda_j}} \int_{-c'/c}^{c'/c} \varphi^c_k(\xi) \varphi^c_j(\xi) d\xi \quad (j, k \geq 0)$$
Special case: Bandpass prolates

Time limited to $[-1, 1]$, frequency limited to $c' \leq |\xi| \leq c$.

Fourier covariance: $\hat{\varphi}_n$ is a truncated dilate of φ_n.

$$R_{jk} = \frac{i^{k-j}}{\sqrt{\lambda_k \lambda_j}} \int_{-c'/c}^{c'/c} \varphi_k^c(\xi) \varphi_j^c(\xi) \, d\xi \quad (j, k \geq 0)$$

If $P_{c,c'} Q\psi = \lambda \psi$ and $\psi = \sum_n \alpha_n \varphi_n^c$, then

$$\lambda \alpha = (I - R) \Lambda \alpha; \quad \alpha = \{\alpha_n\}; \quad \Lambda = \text{diag}\{\lambda_n\}$$
Special case: Bandpass prolates

Time limited to $[-1, 1]$, frequency limited to $c' \leq |\xi| \leq c$.

Fourier covariance: $\hat{\varphi}_n$ is a truncated dilate of φ_n.

$$R_{jk} = \frac{i^{k-j}}{\sqrt{\lambda_k \lambda_j}} \int_{c'/c}^{c'/c} \varphi^c_k(\xi) \varphi^c_j(\xi) \, d\xi \quad (j, k \geq 0)$$

If $P_{c,c'} Q \psi = \lambda \psi$ and $\psi = \sum_n \alpha_n \varphi^c_n$, then

$$\lambda \alpha = (I - R) \Lambda \alpha; \quad \alpha = \{\alpha_n\}; \quad \Lambda = \text{diag}\{\lambda_n\}$$
Figure: $\psi_0^{c'}c$ for $c = 5\pi/2$. Symmetric bandpass prolates having largest energy concentration to $[-1,1]$. The thick curves: $c'/c = 0.02$ and the value $c'/c = 0.8$.
EEG theory: brain uses phase in different bands for distributed cognitive processes
EEG theory: brain uses phase in different bands for distributed cognitive processes
Indicated by small deviations in phase difference among recruited regions.
Application to phase locking in EEG

EEG theory: brain uses phase in different bands for distributed cognitive processes
Indicated by small deviations in phase difference among recruited regions.
Different methods of measuring phase in band of interest: Filtered analytic signal; Gabor functions; Empirical modes
EEG theory: brain uses phase in different bands for distributed cognitive processes
Indicated by small deviations in phase difference among recruited regions.
Different methods of measuring phase in band of interest: Filtered analytic signal; Gabor functions; Empirical modes
Proposed here: Project onto span of time and bandpass limiteds

$PLV = \left| \int \text{analytic chan1 proj} \right| \left| \text{analytic chan1 proj} \right| \left| \text{analytic chan2 proj} \right| \left| \text{analytic chan2 proj} \right|$
EEG theory: brain uses phase in different bands for distributed cognitive processes
Indicated by small deviations in phase difference among recruited regions.
Different methods of measuring phase in band of interest: Filtered analytic signal; Gabor functions; Empirical modes
Proposed here: Project onto span of time and bandpass limiteds
Illustrated: gamma band (here 24 Hz – 40 Hz) 3 – 5 cycles
Application to phase locking in EEG

EEG theory: brain uses phase in different bands for distributed cognitive processes
Indicated by small deviations in phase difference among recruited regions.
Different methods of measuring phase in band of interest: Filtered analytic signal; Gabor functions; Empirical modes
Proposed here: Project onto span of time and bandpass limiteds
Illustrated: gamma band (here 24 Hz – 40 Hz) 3 – 5 cycles

\[\text{PLV} = \left| \int \frac{\text{analytic chan1 proj}}{|\text{analytic chan1 proj}|} \frac{\text{analytic chan2 proj}}{|\text{analytic chan2 proj}|} \right| \]
EEG channel raw data

Joe Lakey (w Jeff Hogan) Time- and bandlimiting
Channel projections, 6 eigenvectors, 24–40 Hz, 1/8 seconds.

Joe Lakey (w Jeff Hogan)

Time- and bandlimiting
Two-channel projection PLVs & averages vs time centers

Joe Lakey (w Jeff Hogan) Time- and bandlimiting