Time-Frequency localization of Multiband signals
University of Arkansas, November 7, 2008

Joe Lakey (w Scott Izu)1

November 3, 2008
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)
Time and frequency localization

- Fourier transform: $\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt$

- $P_{\Sigma} f(x) = (\hat{f} \mathbb{1}_{\Sigma})^\vee(x)$; Paley-Wiener: $\text{PW}_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R}))$

Fundamental Questions:

- Sampling theory of PW_{Σ}
- Time localization of PW_{Σ}
- $Q_S f(x) = f(x) 1_S(x)$
- $P_{\Sigma} Q_S P_{\Sigma}$: self-adjoint, trace $|S|\Sigma$
- Eigenvalues of $P_{\Sigma} Q_S P_{\Sigma}$: vs $|S|\Sigma$
- Linear distribution of Σ
- Sample based time-localized approximations
- ψ_n eigenvectors of $P_{\Sigma} Q_S$
- Quantify $\langle f, \psi_n \rangle$ in terms of $\{f(x_k)\}$
- Quantify finite-dimensional approximations
- DFT version of $P_{\Sigma} Q_S$ versus R_{\ldots}

Applications in spread spectrum communications...
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)
- \(P_{\Sigma} f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_{\Sigma}(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(\text{PW}_\Sigma \)
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)

- \(P_{\Sigma}f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_{\Sigma}(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(\text{PW}_\Sigma \)
- Time localization of \(\text{PW}_\Sigma \)
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)
- \(P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(PW_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)

Fundamental Questions:
- Sampling theory of \(PW_\Sigma \)
- Time localization of \(PW_\Sigma \)
 - \(QSf(x) = f(x) \mathbb{1}_S(x) \);

Applications in spread spectrum communications
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)
- \(P_{\Sigma}f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(\text{PW}_{\Sigma} \)
- Time localization of \(\text{PW}_{\Sigma} \)
 - \(Q_{\Sigma}f(x) = f(x) \mathbb{1}_S(x) \)
 - \(P_{\Sigma}Q_{\Sigma}P_{\Sigma} \): self-adjoint, trace \(|S||\Sigma|\)

Applications in spread spectrum communications...
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)
- \(P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(\text{PW}_\Sigma \)
- Time localization of \(\text{PW}_\Sigma \)
 - \(Q_S f(x) = f(x) \mathbb{1}_S(x) \)
 - \(P_\Sigma Q_S P_\Sigma \): self-adjoint, trace \(|S||\Sigma| \)
 - Eigenvalues of \(P_\Sigma Q_S P_\Sigma \): vs \(|S||\Sigma| \)
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} \, dt \)
- \(P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(\text{PW}_\Sigma \)
- Time localization of \(\text{PW}_\Sigma \)
 - \(Q_S f(x) = f(x) \mathbb{1}_S(x) \)
 - \(P_\Sigma Q_S P_\Sigma \): self-adjoint, trace \(|S||\Sigma|\)
 - Eigenvalues of \(P_\Sigma Q_S P_\Sigma \): vs \(|S||\Sigma|\)
 - Linear distribution of \(\Sigma \)
- Sample based time-localized approximations
- \(\psi_n \) eigenvectors of \(P_\Sigma Q_S P_\Sigma \)
- Quantify \(\langle f, \psi_n \rangle \) in terms of \(\{f(x_k)\} \)
- Quantify finite-dimensional approximations
- DFT version of \(P_\Sigma Q_S P_\Sigma \) versus ...

Applications in spread spectrum communications...
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)

- \(P_{\Sigma} f(x) = (\hat{f} 1_{\Sigma})^\vee(x) \); Paley-Wiener: \(PW_\Sigma = P_{\Sigma}(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(PW_\Sigma \)
- Time localization of \(PW_\Sigma \)
 - \(Q_S f(x) = f(x) 1_S(x) \)
 - \(P_{\Sigma} Q_S P_{\Sigma} \): self-adjoint, trace \(|S||\Sigma| \)
 - Eigenvalues of \(P_{\Sigma} Q_S P_{\Sigma} \): \(|S||\Sigma| \)
 - Linear distribution of \(\Sigma \)
- Sample based time-localized approximations

Joe Lakey (w Scott Izu)
Fourier transform: $\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} dt$

$P_\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee (x)$; Paley-Wiener: $PW_\Sigma = P_\Sigma (L^2(\mathbb{R}))$

Fundamental Questions:

- Sampling theory of PW_Σ
- Time localization of PW_Σ
 - $Q_S f(x) = f(x) \mathbb{1}_S(x)$;
 - $P_\Sigma Q_S P_\Sigma$: self-adjoint, trace $|S||\Sigma|$
 - Eigenvalues of $P_\Sigma Q_S P_\Sigma$: vs $|S||\Sigma|$
 - Linear distribution of Σ
- Sample based time-localized approximations
 - ψ_n eigenvectors of $P_\Sigma Q_S$,
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} dt \)
- \(P_\Sigma f(x) = (\hat{f} 1_\Sigma)^\vee(x) \); Paley-Wiener: \(PW_\Sigma = P_\Sigma(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(PW_\Sigma \)
- Time localization of \(PW_\Sigma \)
 - \(QSf(x) = f(x) 1_S(x) \)
 - \(P_\Sigma QS P_\Sigma \): self-adjoint, trace \(|S||\Sigma| \)
 - Eigenvalues of \(P_\Sigma QS P_\Sigma \): vs \(|S||\Sigma| \)
 - Linear distribution of \(\Sigma \)
- Sample based time-localized approximations
 - \(\psi_n \) eigenvectors of \(P_\Sigma QS \)
 - Quantify \(\langle f, \psi_n \rangle \) in terms of \(\{f(x_k)\} \)

Joe Lakey (w Scott Izu)
Time and frequency localization

- Fourier transform: $\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} dt$
- $P_{\Sigma}f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x)$; Paley-Wiener: $PW_\Sigma = P_\Sigma(L^2(\mathbb{R}))$

Fundamental Questions:

- Sampling theory of PW_Σ
- Time localization of PW_Σ
 - $QSf(x) = f(x) \mathbb{1}_S(x)$
 - $P_\Sigma QS P_\Sigma$: self-adjoint, trace $|S||\Sigma|
 - Eigenvalues of $P_\Sigma QS P_\Sigma$: vs $|S||\Sigma|
 - Linear distribution of Σ

- Sample based time-localized approximations
 - ψ_n eigenvectors of $P_\Sigma QS$,
 - Quantify $\langle f, \psi_n \rangle$ in terms of $\{f(x_k)\}$
 - Quantify finite-dimensional approximations

Applications in spread spectrum communications...
Time and frequency localization

- Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi it\xi} dt \)

- \(P\Sigma f(x) = (\hat{f} \mathbb{1}_\Sigma)^\vee(x) \); Paley-Wiener: \(\text{PW}_\Sigma = P\Sigma(L^2(\mathbb{R})) \)

Fundamental Questions:

- Sampling theory of \(\text{PW}_\Sigma \)
- Time localization of \(\text{PW}_\Sigma \)
 - \(Q_S f(x) = f(x) \mathbb{1}_S(x) \)
 - \(P\Sigma Q_S P\Sigma \): self-adjoint, trace \(|S||\Sigma| \)
 - Eigenvalues of \(P\Sigma Q_S P\Sigma \): vs \(|S||\Sigma| \)
 - Linear distribution of \(\Sigma \)

- Sample based time-localized approximations
 - \(\psi_n \) eigenvectors of \(P\Sigma Q_S \),
 - Quantify \(\langle f, \psi_n \rangle \) in terms of \(\{f(x_k)\} \)
 - Quantify finite-dimensional approximations

- DFT version of \(P\Sigma Q_S \) versus \(\mathbb{R} \) . . .
Fourier transform: \(\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i t \xi} \, dt \)

\[P_{\Sigma} f(x) = (\hat{f} \mathbb{1}_{\Sigma})^\vee(x); \text{ Paley-Wiener: } \text{PW}_{\Sigma} = P_{\Sigma}(L^2(\mathbb{R})) \]

Fundamental Questions:

- Sampling theory of \(\text{PW}_{\Sigma} \)
- Time localization of \(\text{PW}_{\Sigma} \)
 - \(Q_{S} f(x) = f(x) \mathbb{1}_{S}(x) \)
 - \(P_{\Sigma} Q_{S} P_{\Sigma} \): self-adjoint, trace \(|S||\Sigma| \)
 - Eigenvalues of \(P_{\Sigma} Q_{S} P_{\Sigma} \): vs \(|S||\Sigma| \)
 - Linear distribution of \(\Sigma \)
- Sample based time-localized approximations
 - \(\psi_n \) eigenvectors of \(P_{\Sigma} Q_{S} \)
 - Quantify \(\langle f, \psi_n \rangle \) in terms of \(\{f(x_k)\} \)
 - Quantify finite-dimensional approximations
- DFT version of \(P_{\Sigma} Q_{S} \) versus \(\mathbb{R} \) . . .
- Applications in spread spectrum communications . . .
Time and frequency localization

P \Sigma Q S \Sigma: self-adjoint,

\lambda_{\text{max}} = \lambda_0 = \|P \Sigma Q S\| = \sup_{f \in PW, \|f\|_2 = 1} \|Q S (f)\|_2

Uncertainty principle: \lambda_{\text{max}} < 1 if \|S\|_{\Sigma} < \infty

Kernel: K(x, t) = 1 S(t)(1 \Sigma) \vee (x - t);

Trace: \sum \lambda_j = \text{tr}(P \Sigma Q S) = \int K(t, t) dt = \|S\|_{\Sigma}.
$P_\Sigma Q_\Sigma P_\Sigma$: self-adjoint,
Time and frequency localization

\[P_\Sigma Q_\Sigma P_\Sigma: \text{ self-adjoint,} \]

\[\lambda_{\text{max}} = \lambda_0 = \| P_\Sigma Q_\Sigma \| = \sup_{f \in PW_\Sigma, \| f \| = 1} \| Q_\Sigma(f) \|^2 \]
Time and frequency localization

- $P_{\Sigma} Q_{S} P_{\Sigma}$: self-adjoint,

$$\lambda_{\text{max}} = \lambda_{0} = \| P_{\Sigma} Q_{S} \| = \sup_{f \in \mathcal{P} W_{\Sigma}, \| f \| = 1} \| Q_{S}(f) \|^{2}$$

- Uncertainty principle: $\lambda_{\text{max}} < 1$ if $|S||\Sigma| < \infty$
Time and frequency localization

- $P_{\Sigma}Q_{S}P_{\Sigma}$: self-adjoint,

\[
\lambda_{\text{max}} = \lambda_{0} = \|P_{\Sigma}Q_{S}\| = \sup_{f \in \text{PW}_{\Sigma}, \|f\|=1} \|Q_{S}(f)\|^{2}
\]

- Uncertainty principle: $\lambda_{\text{max}} < 1$ if $|S||\Sigma| < \infty$

- Kernel: $K(x, t) = 1_{S}(t)(1_{\Sigma})^{\vee}(x - t)$;
Time and frequency localization

- $P_{\Sigma} Q_{S} P_{\Sigma}$: self-adjoint,

$$\lambda_{\text{max}} = \lambda_{0} = \| P_{\Sigma} Q_{S} \| = \sup_{f \in PW_{\Sigma}, \| f \| = 1} \| Q_{S}(f) \|^{2}$$

- Uncertainty principle: $\lambda_{\text{max}} < 1$ if $|S| |\Sigma| < \infty$

- Kernel: $K(x, t) = \mathbb{1}_{S}(t) (\mathbb{1}_{\Sigma})^{\vee}(x - t)$;

- Trace: $\sum \lambda_{j} = \text{tr} (P_{\Sigma} Q_{S}) = \int K(t, t) \, dt = |S| |\Sigma|$.
$S = [-T/2, T/2]; \Sigma = [-\Omega/2, \Omega/2], \text{tr}P_\Omega Q_T = T\Omega \equiv c.$
Time and bandlimiting I: Prolate spheroidal wave functions

- $S = [-T/2, T/2]; \Sigma = [-\Omega/2, \Omega/2], \text{tr}P_\Omega Q_T = T\Omega \equiv c.$
- Orthonormal eigenfunctions: $P_\Omega Q_T\psi_j = \lambda_j\psi_j$
Time and bandlimiting I: Prolate spheroidal wave functions

- \(S = [-T/2, T/2]; \Sigma = [-\Omega/2, \Omega/2], \text{tr} P_\Omega Q_T = T\Omega \equiv c. \)
- Orthonormal eigenfunctions: \(P_\Omega Q_T \psi_j = \lambda_j \psi_j \)
- \(P_\Omega Q_T \) commutes with

\[
(T^2 - t^2) \frac{d^2}{dt^2} - 2t \frac{d}{dt} - \Omega^2 t^2
\]
Time and bandlimiting I: Prolate spheroidal wave functions

- $S = [-T/2, T/2]$; $\Sigma = [-\Omega/2, \Omega/2]$, \(\text{tr} P_\Omega Q_T = T\Omega \equiv c \).
- Orthonormal eigenfunctions: \(P_\Omega Q_T \psi_j = \lambda_j \psi_j \)
- \(P_\Omega Q_T \) commutes with
\[
(T^2 - t^2) \frac{d^2}{dt^2} - 2t \frac{d}{dt} - \Omega^2 t^2
\]
- Eigenfunctions are Prolate Spheroidal Wave Functions
Time and bandlimiting I: Prolate spheroidal wave functions

- $S = [-T/2, T/2]; \Sigma = [-\Omega/2, \Omega/2]$; $\text{tr} P_\Omega Q_T = T\Omega \equiv c$.
- Orthonormal eigenfunctions: $P_\Omega Q_T \psi_j = \lambda_j \psi_j$
- $P_\Omega Q_T$ commutes with
 \[
 (T^2 - t^2) \frac{d^2}{dt^2} - 2t \frac{d}{dt} - \Omega^2 t^2
 \]
- Eigenfunctions are Prolate Spheroidal Wave Functions
- Fourier invariance ($\Omega = 1$): $\hat{\psi}_j(\xi / T) = i^{2j+1} \sqrt{T/\lambda_j} Q_T \psi_j(\xi)$,
- Double orthogonality:
 \[
 \int_{-T/2}^{T/2} \psi_j(t) \psi_k(t) \, dt = \lambda_j \delta_{jk}
 \]
Time and bandlimiting I: Prolate spheroidal wave functions

- \(S = \left[-T/2, T/2\right]; \Sigma = \left[-\Omega/2, \Omega/2\right], \text{tr} P_\Omega Q_T = T\Omega \equiv c. \)
- Orthonormal eigenfunctions: \(P_\Omega Q_T \psi_j = \lambda_j \psi_j \)
- \(P_\Omega Q_T \) commutes with
 \[
 (T^2 - t^2) \frac{d^2}{dt^2} - 2t \frac{d}{dt} - \Omega^2 t^2
 \]
- Eigenfunctions are Prolate Spheroidal Wave Functions
- Fourier invariance (\(\Omega = 1 \)): \(\hat{\psi}_j(\xi/T) = i^{2j+1} \sqrt{T/\lambda_j} Q_T \psi_j(\xi) \)
- Double orthogonality:
 \[
 \int_{-T/2}^{T/2} \psi_j(t) \psi_k(t) \, dt = \lambda_j \delta_{jk}
 \]
- Reproducing kernel
 \[
 \frac{\sin \pi \Omega (x - t)}{\pi (x - t)} = \sum_{j=0}^{\infty} \psi_j(x) \psi_j(t).
 \]
\[\lambda_{\text{max}} = \lambda_0 = \| P_\Sigma Q_S \| = \sup_{f \in PW_\Sigma, \| f \| = 1} \| Q_S(f) \|^2 \]
\[\lambda_{\text{max}} = \lambda_0 = \| P_{\Sigma} Q_S \| = \sup_{f \in \mathcal{PW}_{\Sigma}, \| f \| = 1} \| Q_S(f) \|^2 \]

- \(\psi_0 \): most energy localized in \([-T/2, T/2] \times [-\Omega/2, \Omega/2]\)
Approximately $c = \Omega T$ eigenvalues close to one
Eigenvalue properties

- Approximately \(c = \Omega T \) eigenvalues close to one
- Plunge region of width \(\approx \log c \)
Eigenvalue properties

- Approximately $c = \Omega T$ eigenvalues close to one
- Plunge region of width $\approx \log c$
- Transition about $j = [c]$: $\lambda_{[c]+1} \leq 1/2 \leq \lambda_{[c]-1}$
Figure: Eigenvalues for one frequency interval. \(N = 129 \) point centered DFT. \(S \sim 65 + [-16, 16]; \) \(\Sigma \sim 65 + [-8, 8]. \) \(c = \#T \times \#\Sigma/N = 8.63. \) Plunge region \(\sim 7 \leq n \leq 12. \)
Figure: Even eigenvectors for one frequency interval.

N = 129 point centered DFT.

S \sim 65 + [−16, 16]; \Sigma \sim 65 + [−16, 16].

c = #T \times #\Sigma / N = 8.44.

Plunge region \sim 7 \leq n \leq 12.

Joe Lakey (w Scott Izu)

Time-frequency multiband
Discrete versions: two frequency intervals

Figure: Eigenvalues for one frequency interval. $N = 129$ point centered DFT. $S \sim 65 + [-16, 16]$; $\Sigma \sim 65 + [-8, 8] \cup \pm [24, 32]$. $c = \#T \times \#\Sigma / N = 8.95$. Plunge region $\sim 4 \leq n \leq 15$.
Figure: Even eigenvectors for one frequency interval.

\[N = 129 \text{ point centered DFT.} \]

\[S \sim 65 + [-16, 16]; \Sigma \sim 65 + [-8, 8]. \]

\[c = \frac{#T \times #\Sigma}{N} = 8.63. \]

Plunge region \(7 \leq n \leq 12. \)

Joe Lakey (w Scott Izu)

Time-frequency multiband
Figure: Eigenvalues for two symmetric intervals. $N = 129$ centered DFT points; $T = 65 + [-32, 32]$ $\Sigma = 65 + [-8, 8] \cup 65 \pm [32, 48]$. Normalized area $\#T \times \#\Sigma / N = 24.69$. Plunge region: $17 \leq n \leq 33$
Figure: Discrete PSWFs, two frequency intervals. Normalized area 24.69
Figure: Random Σ, $N = 129$. $c = 24.69$.
Figure: Eigenvalues for random Σ. $N = 129$, $\Sigma = 24.69$
Figure: Eigenvectors for random Σ. \(N = 129, \, c = 24.69 \)
Figure: Kernel of $P_\Sigma Q_T$, $N = 129$, $c = 24.69$ (real part)
Theorem

(i) For any $c = T > 0$ (and $\Omega = 1$) and $0 < \alpha < 1$ the number $N(\alpha)$ of eigenvalues of PQ_c greater than α satisfies

$$N(\alpha) = c + \left(\frac{1}{\pi^2} \log \frac{1 - \alpha}{\alpha} \right) \log \left(\frac{c}{2} \right) + O(\log c).$$
Theorem

(i) For any $c = T > 0$ (and $\Omega = 1$) and $0 < \alpha < 1$ the number $N(\alpha)$ of eigenvalues of PQ_c greater than α satisfies

$$N(\alpha) = c + \left(\frac{1}{\pi^2} \log \frac{1 - \alpha}{\alpha} \right) \log \left(\frac{c}{2} \right) + O(\log c).$$

(ii) For each $\eta > 0$ there is a ρ such that, as $c \uparrow \infty$

$$\lambda_n(c) \to \begin{cases} 0, & \text{if } n = [(1 + \eta)c], \\ [1 + e^{\pi \rho}]^{-1}, & \text{if } n = [c + \frac{\rho}{\pi} \log \frac{\pi c}{2}], \\ 1, & \text{if } n = [(1 - \eta)c]. \end{cases}$$
Essentially time-and-bandlimited signals

\[\left\| g \mathbb{1}_{\{|t| > T/2\}} \right\|_2^2 < \varepsilon : \epsilon - T - \text{timelimited} \]
Essentially time-and-bandlimited signals

\[\| g \mathbb{1}_{\{|t| > T/2\}} \|_2^2 < \varepsilon: \varepsilon-T\text{-timelimited} \]

\[\| \hat{g} \mathbb{1}_{\{|\omega| > \Omega/2\}} \|_2^2 < \varepsilon: \varepsilon-\Omega\text{-bandlimited} \]
Essentially time-and-bandlimited signals

- $\|g 1_{\{|t|>T/2\}}\|_2^2 < \varepsilon$: ε-T-timelimited
- $\|\hat{g} 1_{\{|\omega|>\Omega/2\}}\|_2^2 < \varepsilon$: ε-Ω-bandlimited
- \mathcal{F}_ε: $\|g\| \leq 1$ and g is ε-T-timelimited and ε-Ω-bandlimited
Theorem

(Slepian) For $c = \Omega T$ large enough there are $N \approx c$ elements
$\{g_1, \ldots, g_N\}$ of F_ε such that every element of F_ε is within 2ε in
L^2-norm of some element of the span of $\{g_1, \ldots, g_N\}$.
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals

$N(A_c, \alpha) = c|S| |\Sigma| + N_{\Sigma} N_{S} \pi^2 \log \left(\frac{1 - \alpha}{\alpha} \right) \log c + o(\log c)$

Area $c|S| |\Sigma|$ for $\alpha = 1/2$ in limit.

$\mu\nu$: width of "plunge region"
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_{c\Sigma}QSP_{c\Sigma}$

$N(A_c, \alpha) = |S|/|\Sigma| + N_{SN\Sigma} \pi^2 \log(1 - \alpha/\alpha) \log c + o(\log c)$

Area $c|S|/|\Sigma|$ for $\alpha = 1/2$ in limit.

μ_{ν}: width of "plunge region"
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_{c\Sigma} Q_S P_{c\Sigma}$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_c\Sigma Q_S P_c\Sigma$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
- $N(A_c, \alpha) = c|S||\Sigma| + \frac{N_S N_\Sigma}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log c + o(\log c)$
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_c\Sigma Q_S P_c\Sigma$
- $N(A_c, \alpha) = \# \{ \lambda(A_c) > \alpha \}$
- $N(A_c, \alpha) = c |S||\Sigma| + \frac{N_S N_{\Sigma}}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log c + o(\log c)$
- Area $c |S||\Sigma|$ for $\alpha = 1/2$ in limit.
The ΩT-theorem, Part III: Multiple intervals

- Landau and Widom (1980)
- S, Σ: finite unions of intervals
- $\xi \in c\Sigma$: $\xi/c \in \Sigma$
- $A_c = P_c\Sigma Q_sP_c\Sigma$
- $N(A_c, \alpha) = \#\{\lambda(A_c) > \alpha\}$
- $N(A_c, \alpha) = c|S||\Sigma| + \frac{N_sN_\Sigma}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log c + o(\log c)$
- Area $c|S||\Sigma|$ for $\alpha = 1/2$ in limit.
- $\mu \nu$: width of “plunge region”
Plunge width $\sim N_\Sigma N_\Sigma$

- Separated at infinity
Plunge width $\sim N^2 N$ Σ

- Separated at infinity
- ψ_j frequency concentrated on l_j, $|l_j| = 1$
Plunge width $\sim N_S N_\Sigma$

- Separated at infinity
- ψ_j frequency concentrated on I_j, $|I_j| = 1$
- $\psi_j(t) = e^{2\pi im_j t} \varphi_j(t) \ m_j = \bar{I}_j$.

Each I_j gives one eigenvalue $\approx 1/2$

If each I_j were very short: no large eigenvalues.
Plunge width $\sim N_s N_\Sigma$

- Separated at infinity
- ψ_j frequency concentrated on l_j, $|l_j| = 1$
- $\psi_j(t) = e^{2\pi im_j t} \varphi_j(t)$ $m_j = \overline{l_j}$.
- φ_j frequency concentrated on $[-1/2, 1/2]$.

Joe Lakey (w Scott Izu)
Time-frequency multiband
Plunge width $\sim N_\Sigma N_\Sigma$

- Separated at infinity
- ψ_j frequency concentrated on l_j, $|l_j| = 1$
- $\psi_j(t) = e^{2\pi i m_j t} \varphi_j(t)$, $m_j = l_j$.
- φ_j frequency concentrated on $[-1/2, 1/2]$.

\[\langle \psi_j, \psi_k \rangle = \int_{-1/2}^{1/2} e^{2\pi i (m_j - m_k) t} \varphi_j(t) \overline{\varphi_k(t)} \, dt \]
\[= \hat{\varphi}_1 * \hat{\varphi}_2 * \text{sinc} (m_1 - m_2) = O(1/|m_1 - m_2|) \]
Plunge width $\sim N_S N_\Sigma$

- Separated at infinity
- ψ_j frequency concentrated on l_j, $|l_j| = 1$
- $\psi_j(t) = e^{2\pi i m_j t} \varphi_j(t) \ m_j = \bar{l}_j$
- φ_j frequency concentrated on $[-1/2, 1/2]$.

$$\langle \psi_j, \psi_k \rangle = \int_{-1/2}^{1/2} e^{2\pi i (m_j - m_k) t} \varphi_j(t) \overline{\varphi_k(t)} \ dt$$

$$= \widehat{\varphi_1} \ast \widehat{\varphi_2} \ast \text{sinc} \ (m_1 - m_2) = O(1/|m_1 - m_2|)$$

- Each l_j gives one eigenvalue $\approx 1/2$
Plunge width $\sim N_\Sigma N_\Sigma$

- Separated at infinity
- ψ_j frequency concentrated on I_j, $|I_j| = 1$
- $\psi_j(t) = e^{2\pi im_j t} \varphi_j(t)$, $m_j = \bar{I}_j$.
- φ_j frequency concentrated on $[-1/2, 1/2]$.

\[
\langle \psi_j, \psi_k \rangle = \int_{-1/2}^{1/2} e^{2\pi i(m_j-m_k)t} \varphi_j(t)\overline{\varphi_k(t)} \, dt \\
= \widehat{\varphi_1} * \widehat{\varphi_2} * \text{sinc}(m_1 - m_2) = O(1/|m_1 - m_2|)
\]

- Each I_j gives one eigenvalue $\approx 1/2$
- If each I_j were very short: no large eigenvalues.
When is area formula still valid?

Proposition

Let $\Sigma = [-1/2, 1/2]$ and let S be a union of m pairwise disjoint intervals of total length c. Set

$\nu = \max_\alpha \#\{k \in \mathbb{Z} : (k - 1/2, k + 1/2) \subset S + \alpha\}$ and

$\mu = \min_\beta \#\{\ell \in \mathbb{Z} : (\ell - 1/2, \ell + 1/2) \cap S + \beta \neq \emptyset\}$. Then the eigenvalues λ_k of QSP satisfy

$$\lambda_{\nu-1} \geq 1/2 \geq \lambda_\mu.$$
Largest concentration for a given area

- Donoho and Stark: if $|\Sigma| = 1$ and $T \leq 0.8$ then ...
Largest concentration for a given area

- Donoho and Stark: if $|\Sigma| = 1$ and $T \leq 0.8$ then ...

\[
\int_{-T/2}^{T/2} |f(t)|^2 \, dt \leq \int_{-T/2}^{T/2} |(\hat{f}^\star(t))^\vee|^2 \, dt.
\]
Largest concentration for a given area

- Donoho and Stark: if $|\Sigma| = 1$ and $T \leq 0.8$ then …

- $\int_{-T/2}^{T/2} |f(t)|^2 dt \leq \int_{-T/2}^{T/2} |(\hat{f}^*)^\vee(t)|^2 dt$.

- Optimal concentration: Σ is an interval if T is small enough.
Largest concentration for a given area

- Donoho and Stark: if $|\Sigma| = 1$ and $T \leq 0.8$ then ...

$$\int_{-T/2}^{T/2} |f(t)|^2 \, dt \leq \int_{-T/2}^{T/2} |(\hat{f}^*)^\vee(t)|^2 \, dt.$$

- Optimal concentration: Σ is an interval if T is small enough.

- Rearrangement inequality fails for large measure.
(S, Σ) supports information if $\|P_{\Sigma} Q S P_{\Sigma}\| \geq 1/2$.
Information problem

- (S, Σ) supports information if $\|P_\Sigma Q_S P_\Sigma\| \geq 1/2$.
- ... at rate N: N eigenvalues $\geq 1/2$
Information problem

- \((S, \Sigma)\) supports information if \(\|Penate\ Q_\Sigma\ P_\Sigma\| \geq 1/2\).
- ... at rate \(N\): \(N\) eigenvalues \(\geq 1/2\)
- Rationale: basis functions \(\sim\) codes
- Which pairs support information?
Theorem

(Candès, Romberg, Tao) Fix $N \geq 512$ and β such that $1 \leq \beta \leq (3/8) \log N$. Suppose that S and Σ are subsets of \mathbb{Z}_N whose sizes satisfy

$$|S| + |\Sigma| \leq M(N, \beta) = \frac{N}{\sqrt{(\beta + 1) \log N}} \left(\frac{1}{\sqrt{6}} + o(1) \right).$$

Then with probability at least $1 - O((\log N)^{1/2} / N^\beta)$, every signal x frequency supported in Σ satisfies

$$\|x 1_S\|^2 \leq \frac{1}{2} \|x\|^2.$$
Problem

Fix $M_1 < M_2$ and $K_1 < K_2$ and suppose that $\Sigma \subset \mathbb{Z}_N$ is a union of M intervals, $M_1 \leq M \leq M_2$ of total length $|\Sigma|$, $K_1 \leq |\Sigma| \leq K_2$ and that S is a single interval of length $|S| \leq N_1 < N$, but that S, Σ are otherwise “random.” Quantify the proportion of such rectangles such that $\| A_{S\Sigma} \|^2 \geq 1/2$.
The entropy of a partition \mathcal{P} of a probability space $(\mathcal{X}, \mathcal{B}, \mu)$ is

$$E(\mathcal{P}) = -\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P).$$

Problem

Let $S \sim [-T/2, T/2]$ and let $|\Sigma|$ and hence $|S||\Sigma|$ be fixed in the finite time-frequency plane. Establish a quantitative, probabilistic relationship between the entropy of Σ and $|A S \Sigma|$.
Sampling and Time-Frequency localization
Theorem

(Shen and Walter; Khare and George)

\[\varphi_n \sim \lambda_n \text{ of } PQ_T P. \text{ Then} \]

\[\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k) \]

where the doubly-infinite matrix \(A \) has entries \(A_{mk} \) given by

\[A_{mk} = \int_{-T/2}^{T/2} \text{sinc}(t - m) \text{sinc}(t - k) \, dt. \]

i.e. samples of \(\varphi_n \) form n-th eigenvector of \(\{A_{mk}\} \).
Sampling and eigenfunctions: ΩT case

Theorem

(Shen and Walter; Khare and George)

- $\varphi_n \sim \lambda_n$ of $PQT P$. Then

\[
\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)
\]

where the doubly-infinite matrix A_{mk} is given by

\[
A_{mk} = \int_{-T/2}^{T/2} \text{sinc}(t - m) \cdot \text{sinc}(t - k) \, dt.
\]

i.e. samples of φ_n form nth eigenvector of $\{A_{mk}\}$.

Joe Lakey (w Scott Izu) | Time-frequency multiband
Sampling and eigenfunctions: ΩT case

Theorem
(Shen and Walter; Khare and George)

$\varphi_n \sim \lambda_n$ of $PQ_T P$. Then

$$\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)$$

where the doubly-infinite matrix A has entries A_{mk} given by

$$A_{mk} = \int_{-T/2}^{T/2} \text{sinc} (t - m) \text{sinc} (t - k) \, dt.$$
Sampling and eigenfunctions: ΩT case

Theorem

(Shen and Walter; Khare and George)

- $\varphi_n \sim \lambda_n$ of $PQ_T P$. Then

$$\lambda_n \varphi_n(m) = \sum_k A_{mk} \varphi_n(k)$$

- where the doubly-infinite matrix A has entries A_{mk} given by

$$A_{mk} = \int_{-T/2}^{T/2} \text{sinc} (t - m)\text{sinc} (t - k) \, dt.$$

- i.e. *samples of φ_n form n-th eigenvector of $\{A_{mk}\}$.*
Further discrete observations:

- Orthogonality of sample vectors:

\[\sum_{m=-\infty}^{\infty} \varphi_n(m) \varphi_\ell(m) = \delta_{n,\ell} \quad \text{and} \]
Further discrete observations:

- Orthogonality of sample vectors:
 \[
 \sum_{m=-\infty}^{\infty} \varphi_n(m) \varphi_\ell(m) = \delta_{n,\ell} \quad \text{and}
 \]

- Reproduction in sample space
 \[
 \sum_{n=0}^{\infty} \varphi_n(m) \varphi_n(\ell) = \delta_{m,\ell}.
 \]
Problem

Quantify the sense in which the eigenvectors of the matrix \tilde{A} obtained by truncating A_{mk} to zero where $\max\{m, k\} > N$ approximate those of A.
Interpolation from truncation eigenvectors
Figure: *Interpolation from approximations.* Interpolation of samples of truncation eigenvectors, $T = 5, N = 10$: 21 terms (left) and corresponding DPSS sequences $[E, V] = \text{dpss}(120, 10)$ (right)
Figure: *Errors vs interpolants.* Interpolant error of $2i$-th vectors between $T = 5$, $N = 10$ and $N = 21$ (left) and $2i + 2$-th vector magnitude (right)
Problem

Describe projection onto localized eigenspaces of $P_{\Sigma} Q_T P_{\Sigma}$ in terms of samples of eigenvectors in the multiband case.
Sampling and eigenfunctions: General setup

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma$, $f(t) = \sum_n f(x_n)\psi_n(t)$
Sampling and eigenfunctions: General setup

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma$, $f(t) = \sum_n f(x_n) \psi_n(t)$
- Define $g_n(t) = (\mathbb{1}_\Sigma)^\vee(x_n - t)$.
Sampling and eigenfunctions: General setup

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma$, $f(t) = \sum_n f(x_n)\psi_n(t)$
- Define $g_n(t) = (\mathbb{1}_\Sigma)^\triangledown(x_n - t)$.
- $B : B_{nm} = \int_S g_n(t)\psi_m(t) \, dt$
Sampling and eigenfunctions: General setup

- \(S \subset \mathbb{R} \) and \(\Sigma \subset \mathbb{R} \); \(\psi_n : \forall f \in \text{PW}_\Sigma, f(t) = \sum_n f(x_n)\psi_n(t) \)
- Define \(g_n(t) = (\mathbb{1}_\Sigma)^\vee(x_n-t) \).
- \(B : B_{nm} = \int_S g_n(t)\psi_m(t) \, dt \)
- Then

\[
P_\Sigma Q_S f(x_n) = \int_S \left(\sum_m f(x_n)\psi_m(t) \right) g_n(t) \, dt = \sum_m B_{nm} f(x_m)
\]
Sampling and eigenfunctions: General setup

- $S \subset \mathbb{R}$ and $\Sigma \subset \mathbb{R}$; ψ_n: $\forall f \in \text{PW}_\Sigma, \ f(t) = \sum_n f(x_n) \psi_n(t)$
- Define $g_n(t) = (1_{\Sigma})^\vee(x_n - t)$.
- $B : B_{nm} = \int_S g_n(t) \psi_m(t) \, dt$
- Then

$$P_\Sigma Q_S f(x_n) = \int_S \left(\sum_m f(x_n) \psi_m(t) \right) g_n(t) \, dt = \sum_mB_{nm} f(x_m)$$

- and

$$P_\Sigma Q_S f(t) = \sum_n\left(P_\Sigma Q_S f(x_n) \right) \psi_n(t) = \sum_n \left(\sum_m B_{nm} f(x_n) \right) \psi_n(t)$$
Theorem

If \(\varphi \) is a \(\lambda \)-eigenfunction of \(P_{\Sigma}Q_T \) then \(\{\varphi(x_n)\} \) is a \(\lambda \)-eigenvector of \(B \). Conversely, if \(\mathbf{v} \) is a \(\lambda \)-eigenvector of \(B \) and if
\[
\varphi(t) = \sum_m \nu_m g_m(t)
\]
converges then \(\varphi \) is a \(\lambda \)-eigenfunction of \(B \).
Sampling of multiband signals

- Many approaches: Herley and Wong, Behmard Faridani, Venkataramani Bresler ...
Sampling of multiband signals

- Many approaches: Herley and Wong, Behmard Faridani, Venkataramani Bresler …
- **Venkataramani and Bresler**: periodic nonuniform sampling; Interpolating functions
How to construct sampling/interpolating functions in the multiband setting?
Interpolation and Localization

▶ How to construct sampling/interpolating functions in the multiband setting?
▶ Consistent with localization in time?
Venkataramani and Bresler’s approach

\[\Sigma = \bigcup_{k=1}^{m} [a_k, b_k] \text{ where } b_k < a_{k+1} \]
Venkataramani and Bresler’s approach

- $\Sigma = \bigcup_{k=1}^{m} [a_k, b_k]$ where $b_k < a_{k+1}$
- $a_1 = 0$ and set $\tau = 1/b_m$: $\text{PW}\Sigma \subset \text{PW}[0,1/\tau]$
Venkataramani and Bresler’s approach

- $\Sigma = \bigcup_{k=1}^{m}[a_k, b_k]$ where $b_k < a_{k+1}$
- $a_1 = 0$ and set $\tau = 1/b_m$: $\text{PW}_\Sigma \subset \text{PW}_{[0,1/\tau]}$
- Shannon sampling: sinc interpolating $\{f(n\tau)\}$.
Venkataramani and Bresler’s approach

- $\Sigma = \bigcup_{k=1}^{m} [a_k, b_k]$ where $b_k < a_{k+1}$
- $a_1 = 0$ and set $\tau = 1/b_m$: $\text{PW}_\Sigma \subset \text{PW}_{[0, 1/\tau]}$
- Shannon sampling: sinc interpolating $\{f(n\tau)\}$.
- Slicing parameter L
Venkataramani and Bresler’s approach

- $\Sigma = \bigcup_{k=1}^{m} [a_k, b_k]$ where $b_k < a_{k+1}$
- $a_1 = 0$ and set $\tau = 1/b_m$: $\text{PW}_\Sigma \subset \text{PW}_{[0,1/\tau]}$
- Shannon sampling: sinc interpolating $\{f(n\tau)\}$.
- *slicing parameter* L
- $k = \{0, 1, \ldots, L-1\}$ sample coset s_k of $s = \{f(-n\tau)\}$:
Venkataramani and Bresler’s approach

- $\Sigma = \bigcup_{k=1}^{m}[a_k, b_k]$ where $b_k < a_{k+1}$
- $a_1 = 0$ and set $\tau = 1/b_m$: $\text{PW}_\Sigma \subset \text{PW}_{[0, 1/\tau]}$
- Shannon sampling: sinc interpolating $\{f(n\tau)\}$.
- *slicing parameter* L
- $k = \{0, 1, \ldots, L - 1\}$ sample coset s_k of $s = \{f(-n\tau)\}$:
- n-th term

 \[
 s_{kn} = \begin{cases}
 s_n, & n = k + mL \\
 0, & \text{else}
 \end{cases}
 \]
Set $Q = 1/(L\tau)$: samples per slice per unit time.
Set $Q = 1/(L\tau)$: samples per slice per unit time.

Q-periodic reversed Fourier series of s_k

$$S_k(\xi) = \sum_{n} s_{kn}e^{2\pi in\tau\xi} = Q \sum_{\ell=0}^{L-1} \hat{f} (\xi + \ell Q) e^{-2\pi ik\ell Q\tau}, \xi \in [0, Q).$$
Set $Q = 1/(L\tau)$: samples per slice per unit time.

- Q-periodic reversed Fourier series of s_k

$$S_k(\xi) = \sum_n s_{kn} e^{2\pi i n \tau \xi} = Q \sum_{\ell=0}^{L-1} \hat{f}(\xi + \ell Q) e^{-2\pi ik \ell Q \tau}, \xi \in [0, Q).$$

- Reconstruct from P out of L cosets s_k: $P/Q \gtrapprox |\Sigma|$:
Set $Q = 1/(L\tau)$: samples per slice per unit time.

- Q-periodic reversed Fourier series of s_k

$$S_k(\xi) = \sum_n s_{kn} e^{2\pi in\tau\xi} = Q \sum_{\ell=0}^{L-1} \hat{f}(\xi + \ell Q) e^{-2\pi ik\ell Q\tau}, \xi \in [0, Q).$$

- Reconstruct from P out of L cosets s_k: $P/Q \gtrapprox |\Sigma|$

- approximately $|\Sigma|$ samples per unit time
\[0 = \gamma_0 < \gamma_1 < \cdots < \gamma_M; \ M \leq 2m \]
Spectral slicing

- $0 = \gamma_0 < \gamma_1 < \cdots < \gamma_M; \ M \leq 2m$
- endpoint moduli of Σ modulo Q
Spectral slicing

- $0 = \gamma_0 < \gamma_1 < \cdots < \gamma_M; \; M \leq 2m$
- endpoint moduli of Σ modulo Q
- $\Gamma_\mu = [\gamma_{\mu-1}, \gamma_\mu]$.
Spectral slicing

- $0 = \gamma_0 < \gamma_1 < \cdots < \gamma_M; \ M \leq 2m$
- Endpoint moduli of Σ modulo Q
- $\Gamma_\mu = [\gamma_{\mu-1}, \gamma_\mu]$.
- $\Gamma_\mu + \ell Q \subset \Sigma$ or $\Gamma_\mu + \ell Q \cap \Sigma = \emptyset$
Interpolating functions

\[P = \max_{\mu=1,\ldots,M} \# I_\mu. \]
Interpolating functions

- $P = \max_{\mu=1,\ldots,M} \# I_{\mu}$.
- Fourier submatrix F_μ of $L \times L$ DFT: extract first P rows and columns $\sim \ell \in I_{\mu}$.
Interpolating functions

- $P = \max_{\mu = 1, \ldots, M} \# I_\mu$.
- Fourier submatrix F_μ of $L \times L$ DFT: extract first P rows and columns \(\sim \ell \in I_\mu \).
- $\ell \in I_\mu$: F_μ^{-1} is a left inverse

\[
\hat{f}(\cdot + \ell Q) = \frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k \quad \text{on } \Gamma_\mu
\]
Interpolating functions

- \(P = \max_{\mu=1,\ldots,M} \# \mathcal{I}_\mu. \)
- Fourier submatrix \(F_\mu \) of \(L \times L \) DFT: extract first \(P \) rows and columns \(\sim \ell \in \mathcal{I}_\mu. \)
- \(\ell \in \mathcal{I}_\mu: F_\mu^{-1} \) is a left inverse

\[\hat{f}(\cdot + \ell Q) = \frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k \quad \text{on } \Gamma_\mu \]

\[\hat{f}(\xi) = \sum_{\mu=1}^{M} \sum_{\ell \in \mathcal{I}_\mu} \left(\frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k(\xi) 1_{\Gamma_\mu}(\xi - \ell Q) \right) \quad \text{on } [0, 1/\tau] \]
Interpolating functions

- $P = \max_{\mu=1,\ldots,M} \# \mathcal{I}_\mu$.
- Fourier submatrix F_μ of $L \times L$ DFT: extract first P rows and columns $\sim \ell \in \mathcal{I}_\mu$.
- $\ell \in \mathcal{I}_\mu$: F_μ^{-1} is a left inverse

$$\hat{f}(\cdot + \ell Q) = \frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k$$ on Γ_μ

$$\hat{f}(\xi) = \sum_{\mu=1}^{M} \sum_{\ell \in \mathcal{I}_\mu} \left(\frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k(\xi) \mathbb{1}_{\Gamma_\mu}(\xi - \ell Q) \right)$$ on $[0, 1/\tau]$

- Inverse Fourier transforming:

$$f(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{P-1} f\left((k + nL)\tau\right) \varphi_k(t + nL\tau)$$
Interpolating functions

\[P = \max_{\mu=1,...,M} \# \mathcal{I}_\mu. \]

\[\text{Fourier submatrix } F_\mu \text{ of } L \times L \text{ DFT: extract first } P \text{ rows and columns } \sim \ell \in \mathcal{I}_\mu. \]

\[\ell \in \mathcal{I}_\mu: F_\mu^{-1} \text{ is a left inverse} \]

\[\hat{f}(\cdot + \ell Q) = \frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k \text{ on } \Gamma_\mu \]

\[\hat{f}(\xi) = \sum_{\mu=1}^{M} \sum_{\ell \in \mathcal{I}_\mu} \left(\frac{1}{Q} \sum_{k=0}^{P-1} (F_\mu)_{\ell k}^{-1} S_k(\xi) \mathbb{1}_{\Gamma_\mu}(\xi - \ell Q) \right) \text{ on } [0, 1/\tau] \]

\[\text{Inverse Fourier transforming:} \]

\[f(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{P-1} f\left((k + nL)\tau\right) \varphi_k(t + nL\tau) \]
Figure: Multiband spectrum $\Sigma \subset [0, 5]$
Figure: Pullback of multispectrum, $L = 5$, $T = 1/5$, $1/(LT) = 1$
Issues with spectral slicing: time-frequency localization.

- Choices of “P out of L” and F_{μ}^{-1}: noise/aliasing

\[\Sigma = [0, \frac{1}{p}] \cup [1 - \frac{1}{q}, 1] \]

- Landau rate $|\Sigma| = \frac{p + q}{p q}$.

- Slicing rate $L = pq$ may be large. A spectral bin Γ_μ typically will have length on the order of $\frac{P}{m Q} \approx \frac{|\Sigma|}{m}$.

- $I \times J$ has to satisfy $||I|| ||J|| \geq 1$ to support information.

- Poor time localization of the ϕ_k is expected.
Issues with spectral slicing: time-frequency localization.

- Choices of “P out of L” and F^{-1}_μ: noise/aliasing
- Example: $\Sigma = [0, 1/p] \cup [1 - 1/q, 1]$
Issues with spectral slicing: time-frequency localization.

- Choices of “\(P\) out of \(L\)” and \(F_{\mu}^{-1}\): noise/aliasing
- Example: \(\Sigma = [0, 1/p] \cup [1 - 1/q, 1]\)
- Landau rate \(|\Sigma| = (p + q)/(pq)\).
Issues with spectral slicing: time-frequency localization.

- Choices of “P out of L” and F_{μ}^{-1}: noise/aliasing
- Example: $\Sigma = [0, 1/p] \cup [1 - 1/q, 1]$
- Landau rate $|\Sigma| = (p + q)/pq$.
- Slicing rate $L = pq$ may be large. A spectral bin Γ_μ typically will have length on the order of $P/(mQ) \approx |\Sigma|/m$.
Issues with spectral slicing: time-frequency localization.

- Choices of “P out of L” and F^{-1}_μ: noise/aliasing
- **Example:** $\Sigma = [0, 1/p] \cup [1 - 1/q, 1]$
- Landau rate $|\Sigma| = (p + q)/(pq)$.
- Slicing rate $L = pq$ may be large. A spectral bin Γ_μ typically will have length on the order of $P/(mQ) \approx |\Sigma|/m$.
- $I \times J$ has to satisfy $|I||J| \geq 1$ to *support information*.

Joe Lakey (w Scott Izu)
Time-frequency multiband
Issues with spectral slicing: time-frequency localization.

- Choices of “P out of L” and F^{-1}_μ: noise/aliasing
- *Example:* $\Sigma = [0, 1/p] \cup [1 - 1/q, 1]$
- Landau rate $|\Sigma| = (p + q)/(pq)$.
- Slicing rate $L = pq$ may be large. A spectral bin Γ_μ typically will have length on the order of $P/(mQ) \approx |\Sigma|/m$.
- $I \times J$ has to satisfy $|I||J| \geq 1$ to support information.
- Poor time localization of the φ_k is expected.
Problem

Assuming $\Gamma_\mu T \geq 1$ for all $\mu = 1, \ldots, M$, find conditions under which the interpolating functions lie, or nearly lie, in the span of the first $|\Sigma| T$ eigenfunctions of $P_\Sigma Q_T$.
In multiband case still need
In multiband case still need
 - Analytical eigenvalue estimates
In multiband case still need
- **Analytical** eigenvalue estimates
- **Numerical** evaluation of eigenfunctions
In multiband case still need
- **Analytical** eigenvalue estimates
- **Numerical** evaluation of eigenfunctions
- **Sampling** projections/approximations
In multiband case still need

- **Analytical** eigenvalue estimates
- **Numerical** evaluation of eigenfunctions
- **Sampling** projections/approximations
In multiband case still need
- Analytical eigenvalue estimates
- Numerical evaluation of eigenfunctions
- Sampling projections/approximations

Applications to ... communications ...