Analytic Methods for Image Processing
January, 2008

Joe Lakey

January 23, 2008
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - **geometric distortion**,
 - **blurring**,
 - **occlusion and noise**
- Images are restored by
 - **geometric transformations**, **registration** and other **editing**,
 - **deblurring**,
 - **inpainting** and **denoising**
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - **geometric distortion**,
 - **blurring**,
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - geometric distortion,
 - blurring,
 - occlusion and
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - geometric distortion,
 - blurring,
 - occlusion and
 - noise
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - **geometric distortion**,
 - **blurring**,
 - **occlusion** and
 - **noise**
- Images are **restored** by
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - geometric distortion,
 - blurring,
 - occlusion and
 - noise
- Images are **restored** by
 - geometric transformations, registration and other **editing**
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - geometric distortion,
 - blurring,
 - occlusion and
 - noise
- Images are **restored** by
 - geometric transformations, registration and other **editing**
 - deblurring,
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - geometric distortion,
 - blurring,
 - occlusion and
 - noise
- Images are **restored** by
 - geometric transformations, registration and other **editing**
 - deblurring,
 - inpainting and
Corruption and redemption

- Images as **Edges** plus **textures** plus **backgrounds**
- **Layers** complicate matters.
- Images are **corrupted** by
 - geometric distortion,
 - blurring,
 - occlusion and
 - noise
- Images are **restored** by
 - geometric transformations, registration and other **editing**
 - deblurring,
 - inpainting and
 - denoising
Math Methods in Image Processing

- **Segmentation**, including edge detection, histograms, partitioning/clustering
Math Methods in Image Processing

- **Segmentation**, including edge detection, histograms, partitioning/clustering
- Mathematical **morphology** (erosion, dilation etc, lattice theory and topology)
Math Methods in Image Processing

- **Segmentation**, including edge detection, histograms, partitioning/clustering
- Mathematical **morphology** (erosion, dilation etc, lattice theory and topology)
- **Deconvolution** including Wiener filtering (discussed last fall)
Math Methods in Image Processing

- Segmentation, including edge detection, histograms, partitioning/clustering
- Mathematical morphology (erosion, dilation etc, lattice theory and topology)
- Deconvolution including Wiener filtering (discussed last fall)
- Transformation methods (thresholding transform coefficients)
Math Methods in Image Processing

- Segmentation, including edge detection, histograms, partitioning/clustering
- Mathematical morphology (erosion, dilation etc, lattice theory and topology)
- Deconvolution including Wiener filtering (discussed last fall)
- Transformation methods (thresholding transform coefficients)
- PDE based methods: minimize some energy functional
Math Methods in Image Processing

- **Segmentation**, including edge detection, histograms, partitioning/clustering
- **Mathematical morphology** (erosion, dilation etc, lattice theory and topology)
- **Deconvolution** including Wiener filtering (discussed last fall)
- Transformation methods (**thresholding** transform coefficients)
- **PDE** based methods: minimize some energy functional
- **Compressed sensing** (finding right transformation)
Math Methods in Image Processing

- **Segmentation**, including edge detection, histograms, partitioning/clustering
- **Mathematical morphology** (erosion, dilation etc, lattice theory and topology)
- **Deconvolution** including Wiener filtering (discussed last fall)
- Transformation methods (**thresholding** transform coefficients)
- **PDE** based methods: minimize some energy functional
- **Compressed sensing** (finding right transformation)
- **Hybrids**
Image statistics

- Distribution of pixel (gray) intensities
Image statistics

- Distribution of pixel (gray) intensities
- Histogram tells something
Image statistics

▶ Distribution of pixel (gray) intensities
▶ Histogram tells something
▶ Natural versus synthetic images
Image statistics

- Distribution of pixel (gray) intensities
- Histogram tells something
- **Natural** versus **synthetic** images
- Can one differentiate between **texture** and **noise**?
Granite histograms
Some natural images
Some synthetic images
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Image statistics

Symmlet; j=2, k=(1,1); FxF

Symmlet; j=2, k=(2,2); MxF

Joe Lakey
Computational Methods
Transform based image compression

- Orthogonal transformation
Transform based image compression

- Orthogonal transformation
- Good: decrease coefficient entropy
Transform based image compression

- Orthogonal transformation
- Good: decrease coefficient entropy
- Hard thresholding (compression): discard coefficient below threshold (percent energy)
Transform based image compression

- Orthogonal transformation
- Good: decrease coefficient entropy
- Hard thresholding (compression): discard coefficient below threshold (percent energy)
- Soft thresholding: decrease in proportion to magnitude
Transform based image compression

- Orthogonal transformation
- Good: decrease coefficient entropy
- Hard thresholding (compression): discard coefficient below threshold (percent energy)
- Soft thresholding: decrease in proportion to magnitude
- What comprises a good basis?
Fourier transform

Fast Fourier Transform
Fourier transform

- Fast Fourier Transform
- Implementation of DFT: \(\frac{1}{\sqrt{N}} e^{2\pi i (j-1)(k-1)/N} \)
Fourier transform

- Fast Fourier Transform
- Implementation of DFT: \(\frac{1}{\sqrt{N}} e^{2\pi i (j-1)(k-1)/N} \)
- 2 variable transform (vectorized); still fast
Fourier transform

- Fast Fourier Transform
- Implementation of DFT: \(\frac{1}{\sqrt{N}} e^{2\pi i (j-1)(k-1)/N} \)
- 2 variable transform (vectorized); still fast
- Good for patterns
Fourier transform

- Fast Fourier Transform
- Implementation of DFT: \(\frac{1}{\sqrt{N}} e^{2\pi i (j-1)(k-1)/N} \)
- 2 variable transform (vectorized); still fast
- Good for patterns
- Elements not spatially localized
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Fourier transform
Wavelet transform
Curvelet transform

real part of 128x128 Fourier matrix
Wavelet transforms

- Wavelet ONBs: \(\psi_{jk}(x) = 2^{j/2} \psi(2^j x - k) \)
Wavelet transforms

- Wavelet ONBs: \[\{ \psi_{jk}(x) = 2^{j/2} \psi(2^j x - k) \} \]

- Can have spatial (support) and frequency (smooth) localization
Wavelet transforms

- Wavelet ONBs: \[\{\psi_{jk}(x) = 2^{j/2}\psi(2^j x - k)\} \]
- Can have spatial (support) and frequency (smooth) localization
- 2 variables: tensor products or otherwise
Wavelet transforms

- Wavelet ONBs: \(\{ \psi_{jk}(x) = 2^{j/2} \psi(2^j x - k) \} \)
- Can have spatial (support) and frequency (smooth) localization
- 2 variables: tensor products or otherwise
- Unconditional bases (best) for a variety of function spaces
Wavelet transforms

- Wavelet ONBs: \(\{ \psi_{jk}(x) = 2^{j/2} \psi(2^j x - k) \} \)
- Can have spatial (support) and frequency (smooth) localization
- 2 variables: tensor products or otherwise
- Unconditional bases (best) for a variety of function spaces
- Point singularities but not curves
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Fourier transform
Wavelet transform
Curvelet transform
Approximation in function spaces

- Rate of Approximation in L^p
Approximation in function spaces

- Rate of Approximation in L^p

\[\Sigma_N(B) = \left\{ \sum \alpha_n \varphi_n : \# \{ n : \alpha_n \neq 0 \} \leq N \right\} \]
Approximation in function spaces

- Rate of Approximation in L^p

$$
\Sigma_N(B) = \left\{ \sum \alpha_n \varphi_n : \# \{ n : \alpha_n \neq 0 \} \leq N \right\}
$$

- $A^s_X = \{ f : N^s \sigma_N(f, B, \| \cdot \|_X) \to 0 \}.$
Approximation in function spaces

- Rate of Approximation in L^p

\[\Sigma_N(B) = \left\{ \sum \alpha_n \varphi_n : \# \{ n : \alpha_n \neq 0 \} \leq N \right\} \]

- \[A_X^s = \{ f : N^s \sigma_N(f, B, \| \cdot \|_X) \to 0 \}. \]

- Stečkin numbers

\[d_N(F, B) = \sup_{f \in F, \| f \|=1} \| f - S_N(f, B, \| \cdot \|_{L^2}) \|_{L^2}. \]
Approximation in function spaces

- Rate of Approximation in L^p

\[
\Sigma_N(B) = \left\{ \sum \alpha_n \varphi_n : \#\{n : \alpha_n \neq 0\} \leq N \right\}
\]

- \(A^s_X = \{ f : N^s \sigma_N(f, B, \| \cdot \|_X) \to 0 \} \).

- Stečkin numbers

\[
d_N(\mathcal{F}, \mathcal{B}) = \sup_{f \in \mathcal{F}, \|f\|=1} \| f - S_N(f, \mathcal{B}, L^2) \|_{L^2}.
\]

- Donoho’s heuristic: orthogonal, unconditional basis for \mathcal{F} is minimax best
Function space comparisons

<table>
<thead>
<tr>
<th>Space</th>
<th>Optimal basis</th>
<th>$d_n(\mathcal{F}, \mathcal{B})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^2-Sobolev</td>
<td>W_2^m</td>
<td>Fourier or wavelet</td>
</tr>
<tr>
<td>L^p-Sobolev</td>
<td>W_p^m</td>
<td>wavelet</td>
</tr>
<tr>
<td>Hölder</td>
<td>\dot{C}^α</td>
<td>wavelet</td>
</tr>
<tr>
<td>Bump algebra</td>
<td>$\dot{B}_{1,1}^1$</td>
<td>wavelet</td>
</tr>
<tr>
<td>Bounded variation</td>
<td>BV</td>
<td>Haar</td>
</tr>
<tr>
<td>Segal algebra</td>
<td>S</td>
<td>Wilson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(n^{-m})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(n^{-m})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(n^{-\alpha})$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(1/n)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(1/n)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(n^{-1/2})$</td>
</tr>
</tbody>
</table>

Joe Lakey

Computational Methods
Curvelet transforms

- Use spherical polar decomposition in frequency
Curvelet transforms

- Use spherical polar decomposition in frequency
- Meyer wavelet $\psi_{j,k}$ in scale,
Curvelet transforms

- Use spherical polar decomposition in frequency
- Meyer wavelet $\psi_{j,k}$ in scale,
- Periodic wavelet $w_{i,\ell}$ in angle
Curvelet transforms

- Use spherical polar decomposition in frequency
- Meyer wavelet $\psi_{j,k}$ in scale,
- Periodic wavelet $w_{i,\ell}$ in angle
- Ridgelets

$$\hat{\rho}_\lambda = \frac{1}{2} \frac{1}{\sqrt{|\xi|}} \left(\hat{\psi}_{j,k}(|\xi|)w_{i,\ell}(\theta) + \hat{\psi}_{j,k}(-|\xi|)w_{i,\ell}(\theta + \pi) \right)$$
Curvelet scheme

Subband code: $f \mapsto (P_0 f, Q_1 f, Q_2 f, \ldots)$ (Littlewood-Paley)
Curvelet scheme

- Subband code: $f \mapsto (P_0 f, Q_1 f, Q_2 f, \ldots)$ (Littlewood-Paley)
- Smooth (angular) partitioning $h_R = w_R Q_s f$
Curvelet scheme

- Subband code: \(f \mapsto (P_0f, Q_1f, Q_2f, \ldots) \) (Littlewood-Paley)
- Smooth (angular) partitioning \(h_R = w_R Q_s f \)
- Renormalization \(g_R = T_R^{-1} h_R \)
Curvelet scheme

- Subband code: $f \mapsto (P_0 f, Q_1 f, Q_2 f, \ldots)$ (Littlewood-Paley)
- Smooth (angular) partitioning $h_R = w_R Q_s f$
- Renormalization $g_R = T_R^{-1} h_R$
- Ridgelet analysis $\alpha_{R,\lambda} = \langle g_R, \rho_{\lambda} \rangle$.

Joe Lakey Computational Methods
Curvelet scheme

- Subband code: \(f \mapsto (P_0f, Q_1f, Q_2f, \ldots) \) (Littlewood-Paley)
- Smooth (angular) partitioning \(h_R = w_R Q_s f \)
- Renormalization \(g_R = T_R^{-1} h_R \)
- Ridgelet analysis \(\alpha_{R,\lambda} = \langle g_R, \rho_\lambda \rangle \).
- Synthesis: reverse the steps.
Curvelet scheme

- Subband code: $f \mapsto (P_0 f, Q_1 f, Q_2 f, \ldots)$ (Littlewood-Paley)
- Smooth (angular) partitioning $h_R = w_R Q_s f$
- Renormalization $g_R = T_R^{-1} h_R$
- Ridgelet analysis $\alpha_{R,\lambda} = \langle g_R, \rho_\lambda \rangle$.
- Synthesis: reverse the steps.
- Ridge: aspect ratio width \approx length2.

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Fourier transform
Wavelet transform
Curvelet transform

Ridge in Square

It's Fourier Transform

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Fourier transform
Wavelet transform
Curvelet transform

Ridgelet Tiling

Fourier Transform within Tiling
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
Curvelet approximations

- Geometric curve $\Gamma \subset [0,1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
- Wavelet heuristic:
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
- Wavelet heuristic:
 - grid 2^{-j}
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
- Wavelet heuristic:
 - grid 2^{-j}
 - $O(2^j)$ squares intersect Γ
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
- Wavelet heuristic:
 - grid 2^{-j}
 - $O(2^j)$ squares intersect Γ
 - wavelet coefficient magnitudes $O(2^{-j})$
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
- Wavelet heuristic:
 - grid 2^{-j}
 - $O(2^j)$ squares intersect Γ
 - wavelet coefficient magnitudes $O(2^{-j})$
 - N-th largest coefficient at most $\sim 1/N$.
Curvelet approximations

- Geometric curve $\Gamma \subset [0, 1]^2$
- N term Fourier $N^{-1/2}$, wavelets N^{-1}.
- Adapted triangular wedges: N-term $O(N^{-2})$. Best possible.
- Nonadaptive curvelets $O((\log N)^3/N^2)$.
- Wavelet heuristic:
 - grid 2^{-j}
 - $O(2^j)$ squares intersect Γ
 - wavelet coefficient magnitudes $O(2^{-j})$
 - N-th largest coefficient at most $\sim 1/N$.
- Caveat: (adaptive) Mallat wavelets
Curvelet approximations

- Star-shaped objects with C^2 boundary
Curvelet approximations

- Star-shaped objects with C^2 boundary
- Radius function $\rho(\theta)$, $0 \leq \theta \leq 2\pi$, $|\rho''| \leq C$
Curvelet approximations

- Star-shaped objects with C^2 boundary
- Radius function $\rho(\theta)$, $0 \leq \theta \leq 2\pi$, $|\rho''| \leq C$
- $\text{Star}^2(C)$: characteristic functions of star-shaped sets.
Curvelet approximations

- Star-shaped objects with C^2 boundary
- Radius function $\rho(\theta)$, $0 \leq \theta \leq 2\pi$, $|\rho''| \leq C$
- $\text{Star}^2(C)$: characteristic functions of star-shaped sets.
- Donoho, Johnstone (1995): any \textit{polynomial depth dictionary} (roughly finite parameter), the N-th term of any $\text{Star}^2(C) \geq \sim c/(N^2 \log N)$.
Comparison for a texture

Zoom in of brodatz3

Zoom in of 2 pct Fourier brodatz3

Zoom in of 2 pct wavelet brodatz3

Zoom in of 2 pct curvelet brodatz3
2 % Fourier Compressions
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

original image

reconstruction from large Fourier coefficients

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

original image

reconstruction from large Fourier coefficients

Joe Lakey
Computational Methods
2 % Wavelet Compressions
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

original image

reconstruction from largest wavelet coefficients

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

original image
reconstruction from largest wavelet coefficients

Joe Lakey
Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Joe Lakey Computational Methods
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Side by side
Facets of Image Restoration
Mathematical Methods
Transform based compression and denoising
Compare and Compress

Joe Lakey
Computational Methods
2 % Curvelet Compressions
Conclusions

- Several tools (orthogonal bases, dictionaries)
Conclusions

- Several tools (orthogonal bases, dictionaries)
- Compressibility depends on structure
Conclusions

- Several tools (orthogonal bases, dictionaries)
- Compressibility depends on structure
- One dictionary not always better than others
Conclusions

- Several tools (orthogonal bases, dictionaries)
- Compressibility depends on structure
- One dictionary not always better than others
- Function spaces \Leftrightarrow Optimality \Leftrightarrow Asymptotic
Next time: Edge detection and Denoising

- Edge detection
Next time: Edge detection and Denoising

- Edge detection
- Soft thresholding
Next time: Edge detection and Denoising

- Edge detection
- Soft thresholding
- Modeling objects and textures (PDE)
Next time: Edge detection and Denoising

- Edge detection
- Soft thresholding
- Modeling objects and textures (PDE)
- Solvability