Real Analysis
Group Assignment 1
Fall 2004

Instructions: Turn in a solution of each problem. One solution per group. Three or four individuals per group. Each individual must write up at least two problems.

1. Let \(s \) denote the sum of the series \(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \). Express the sum of the series \(1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \ldots \) in terms of \(s \). Do the same for the series \(1 - \frac{1}{2} - \frac{1}{6} + \frac{1}{8} - \frac{1}{10} - \frac{1}{12} + \frac{1}{7} - \ldots \). Do the same for \(1 + \frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \frac{1}{9} + \frac{1}{11} - \frac{1}{13} + \ldots \).

2. Show that \(\sum_{n=1}^{\infty} \frac{3n - 2}{n(n+1)(n+2)} = 1 \).

3. Let \(\{r_n\} \) denote the rational numbers in \((0,1)\) enumerated in the form \(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \ldots \). Show that \(\sum_{n=1}^{\infty} r_n \) diverges. Is there any enumeration of \(\mathbb{Q} \cap (0,1) \) whose corresponding series converges? Explain.

4. Determine whether each of the following sequences has a convergent series:
 \(a_k = \sqrt[k+1]{k+1} - \sqrt[k]{k} \); \(b_k = \sqrt{k} a_k \).

5. Show that if \(f(t) \) is monotonically decreasing and if \(c_n = \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(t) \, dt \) then \(\lim_{n \to \infty} c_n \) exists.

6. Show that if \(\sum_{k=1}^{\infty} a_k^2/k \) converges then \(\frac{1}{N} \sum_{k=1}^{N} a_k \) tends to zero as \(N \to \infty \).

7. Determine the values of \(x \) for which the following series converge.
 (a) \(\frac{x}{2} + \frac{4x^2}{9} + \frac{9x^3}{28} + \frac{16x^4}{65} + \ldots \)
 (b) \(1 + \frac{x}{3} + \frac{2x^2}{9} + \frac{(2\cdot3)x^3}{27} + \frac{(2\cdot3\cdot4)x^4}{81} + \ldots \)
 (c) \(\sum_{k=1}^{\infty} \frac{x^k(1-x)^k}{k} \)
 (d) \(\sum_{k=1}^{\infty} \sin \frac{x}{k} \)

8. Compute \(\sum_{n=3}^{\infty} \frac{1}{n^2-4} \) (Hint: \(1 = \frac{1}{1} - \frac{1}{5} + \frac{1}{5} - \frac{1}{9} + \frac{1}{9} - \frac{1}{13} + \ldots \)).

9. Show that \(\sum_{n=1}^{\infty} \frac{1}{n^2+3n-4} = \frac{137}{300} \).

10. How many terms of the series \(S = \sum_{n=0}^{\infty} (-1)^n/(n+1)^2 \) are needed to approximate \(S \) accurate to 4 decimal places? Provide a value for this approximation.

11. Evaluate and describe convergence of the infinite product \((1 - \frac{1}{4})(1 - \frac{1}{9})(1 - \frac{1}{16}) \cdots \)

12. Evaluate and describe convergence of the ‘continued radical’
\[\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \ldots}}}} \]