Algebras in type-2 fuzzy sets

John Harding, Carol and Elbert Walker

New Mexico State University
www.math.nmsu.edu/~JohnHarding.html
jharding@nmsu.edu

Denver, October 2016
Type-1 fuzzy sets

$X = \{50, 60, 70, 80, 90\}$

A type-1 fuzzy subset of X is a map $\text{COLD} : X \rightarrow [0, 1]$

The expert’s belief that 60 is cold is 0.8.
This is a map $\text{COLD} : X \rightarrow \{(a, b) \in [0, 1]^2 : a \leq b\}$.

The expert’s belief that 60 is cold is between $[0.6, 0.9]$.

![Graph showing intervals for coldness]
Type-2 fuzzy sets

A type-2 fuzzy subset is $\text{COLD} : X \rightarrow \{f | f : [0, 1] \rightarrow [0, 1]\}$
Truth value algebras

The truth value algebras for fuzzy sets, interval valued fuzzy sets, and type-2 fuzzy sets are

\[I = [0, 1] \]

\[I^{[2]} = \{(a, b) : a \leq b \in I\} \]

\[M = \{f \mid f : I \rightarrow I\} \]

\(I\) and \(I^{[2]}\) sit in \(M\) as characteristic functions of points and intervals.
Operations

I and \(I^2 \) are De Morgan algebras. One also considers t-norms and conorms on these.

Definition (Zadeh) Define the following operations on \(M \)

1. \((f \sqcap g)(x) = \bigvee \{(f(y) \land g(z)) : y \land z = x\}\)
2. \((f \sqcap g)(x) = \bigvee \{(f(y) \land g(z)) : y \lor z = x\}\)
3. \(f^*(x) = f(1 - x)\)
4. \(0(x) = 1\) if \(x = 0 \) and 0 otherwise
5. \(1(x) = 1\) if \(x = 1 \) and 0 otherwise

These are **convolutions** of the corresponding operations on \(I \). We can also convolute t-norms \(\triangle \) and conorms on \(I \).
Equations

Theorem M satisfies the equations for De Morgan algebras except that absorption and distributivity are weakened to the following.

1. \(x \cap (x \cup y) = x \cup (x \cap y) \)

2. \((x \cap y) \cup (x \cap z) \cup (y \cap z) = (x \cup y) \cap (x \cup z) \cap (y \cup z) \)

M is not a lattice.
The unbalanced distributive laws do not hold.
M is a type of thing known as a De Morgan Birkhoff system.
Theorem The variety $V(M)$ is generated by a finite algebra. The variety generated by the reduct (M, \sqcap, \sqcup) is generated by

\[
\begin{array}{c}
 d \\
 c \\
 b \\
 a \\
\end{array}
\quad \quad \quad
\begin{array}{c}
 d \\
 b \\
 c \\
 a \\
\end{array}
\]

\[
\sqcap \\
\sqcup
\]

Proof $V(M)$ is generated by the complex algebra of any bounded chain with involution that has at least 5 elements.

So these varieties have solvable free word problems. We do not know if they are finitely based.
Definition A function $f : I \rightarrow I$ is convex normal if it goes up to 1, then down.

Convex normal functions are a not too restrictive setting for our desired use as belief functions.
A related algebra

Theorem The convex normal functions are a subalgebra of M. For the quotient L of this subalgebra modulo agreement c.a.e.

1. L is a complete, completely distributive DeMorgan algebra
2. L is a compact Hausdorff topological algebra
3. $\int_0^1 |f(x) - g(x)| \, dx$ is a metric on it

Further, the convolution \triangle of any continuous t-norm on I gives a commutative quantale structure (L, \triangle, \vee).
A purpose

Aim: extend the theory of fuzzy controllers to the type-2 setting.

An example

We have a room with a device in it to heat and cool the room and a sensor that measures approximate temperature. Our controller is to adjust the setting of the device.

\[X = \{50, 60, 70, 80, 90\} \] possible temperatures
\[Y = \{-2, -1, 0, +1, +2\} \] settings of the device

A setting of -2 puts lots of cold air in the room, +2 lots of hot air.
Type-1 fuzzy controllers

Make linguistic variables **Cold**, **Nice**, and **Hot** for temperature; **Air** and **Furnace** for settings. Experts give fuzzy sets for these.
Type-1 fuzzy controllers

We represent the fuzzy sets for temperature as a matrix

\[P = \begin{pmatrix} 1 & .5 & 0 & 0 & 0 \\ 0 & .5 & 1 & .5 & 0 \\ 0 & 0 & 0 & .5 & 1 \end{pmatrix} \]

\[\begin{array}{c|ccc|ccc} & 50 & 60 & 70 & 80 & 90 \\ \hline \text{Cold} & 1 & .5 & 0 & 0 & 0 \\ \text{Nice} & 0 & .5 & 1 & .5 & 0 \\ \text{Hot} & 0 & 0 & 0 & .5 & 1 \end{array} \]
Type-1 fuzzy controllers

And do the same for adjustments

\[Q = \begin{pmatrix} 1 & .7 & .3 & 0 & 0 \\ 0 & 0 & .3 & .7 & 1 \end{pmatrix} \]

\[
\begin{array}{c|ccccc}
\hline
& -2 & -1 & 0 & 1 & 2 \\
\hline
\text{Air} & 1 & .7 & .3 & 0 & 0 \\
\text{Furnace} & 0 & 0 & .3 & .7 & 1 \\
\hline
\end{array}
\]
Type-1 fuzzy controllers

We are given a rule base that says what should be done in each case.

\[R = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

<table>
<thead>
<tr>
<th></th>
<th>Cold</th>
<th>Nice</th>
<th>Hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FURNACE</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Type-1 fuzzy controllers

Then if our sensor gives a reading of 80 for temperature we make a column vector \hat{T} with a 1 in the spot for 80 and 0’s elsewhere and compute $Q^T RP(\hat{T})$

\[
\begin{pmatrix}
1 & 0 \\
.7 & 0 \\
.3 & .3 \\
0 & .7 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & .5 & 0 & 0 & 0 \\
0 & .5 & 1 & .5 & 0 \\
0 & 0 & 0 & .5 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
.5 \\
.3 \\
.2 \\
0
\end{pmatrix}
\]

The result is a fuzzy subset of $Y = \{-2, -1, 0, 1, 2\}$ that we then “defuzzify” to get an adjustment to the device.
Matrix multiplication computes entries as sums of products.

This multiplication was done using \cdot as product and \lor as sum. It can be done using any continuous t-norm Δ as product and \lor as sum. This requires

\[x \Delta \lor y_i = \lor (x \Delta y_i) \]

to obtain associativity of matrix multiplication.
Ordinary fuzzy controllers live in the symmetric monoidal category of matrices over \((I, \triangle, \lor)\).

Objects: sets
Morphisms: matrices composed by multiplication

Tensor product is ordinary product of sets and Kronecker products of matrices. It allows to have more dependent or independent variables in the controller.
Type-2 fuzzy controllers

Do exactly the same with the category of matrices over \((L, \Delta, V)\).
Practicality

Implementations would require some restriction on the functions $f : I \to I$ (taking n values, or with n linear pieces)

Algorithms for \cap, \cup of convex normal functions are linear in n.
Thanks for listening.

Papers at www.math.nmsu.edu/~jharding