MATH 541- Part I - summary

Material covered before the first exam. Write examples for each of the concepts defined below.

I. POINT SET TOPOLOGY

1. Topological space. A topological space consists of a pair \((X, \tau)\) where \(X\) is a set and \(\tau \subset P(X)\) is a family of subsets of \(X\) satisfying the 3 properties below:
 i) \(\emptyset \in \tau\) and \(X \in \tau\),
 ii) \(U_1, \ldots, U_n \in \tau\) implies \(\cap_{i=1}^{n} U_i \in \tau\),
 iii) \(U_i \in \tau \forall i \in I\) implies \(\cup_{i \in I} U_i \in \tau\).

2. Continuity. Let \((X, \tau_X)\) and \((Y, \tau_Y)\) be topological spaces. A map \(f: X \to Y\) is called continuous if \(A \in \tau_Y \Rightarrow f^{-1}(A) \in \tau_X\).

3. Connectedness. \(X\) is disconnected is there exist \(A, B \in \tau_X\) such that \(X = A \cup B\) and \(A \cap B = \emptyset\). \(X\) is connected if it is not disconnected.

4. Hausdorff. \(X\) is Hausdorff if for every pair of distinct points \(x, y \in X\) there exist open sets \(U_x, U_y \in \tau\) such that \(x \in U_x, y \in U_y\) and \(U_x \cap U_y = \emptyset\).

5. Compactness. \(X\) is compact if every open cover of \(X\) has a finite subcover.

 SOME IMPORTANT RESULTS

6. In \(\mathbb{R}^n\) continuity with epsilons and deltas is equivalent to topological continuity.

7. In \(\mathbb{R}^n\) the topologies defined by the \(\ell_1, \ell_2\) and \(\ell_\infty\) norms are equivalent.

8. If \(X\) is Compact and \(F\) is a closed subset of \(X\), then \(F\) is compact.

9. If \(X\) is Hausdorff and \(K\) is a compact subset of \(X\), then \(K\) is closed.
II. Algebraic Topology

10. **Homotopy of paths.** Let $\alpha : I \rightarrow X$ and $\beta : I \rightarrow X$ be paths in X with same end points, that is, $\alpha(0) = \beta(0)$ and $\alpha(1) = \beta(1)$. Then α is homotopic to β relative $(0,1)$ if there exits a continuous map $H : I \times I \rightarrow X$ such that

 i. $H(s,0) = \alpha(s) \forall s$

 ii. $H(s,1) = \beta(s) \forall s$

 iii. $H(0,t) = \alpha(0) = \beta(0) \forall t$

 iv. $H(1,t) = \alpha(1) = \beta(1) \forall t$.

11. **Fundamental Group.** A loop in X with base point x is a closed path α in X with end points x, that is, $\alpha(0) = \alpha(1) = x$. Homotopy equivalence relative $(0,1)$ defines an equivalence relation on the sets of loops in X with base point x. This set of equivalence classes forms a group with the operation of *concatenation* of loops, defined by

 \[
 \alpha \beta(s) = \begin{cases}
 \alpha(2s) \text{ if } 1 \leq s \leq 1/2 \\
 \beta(1-2s) \text{ if } 1/2 \leq s \leq 1
 \end{cases}.
 \]

 This group is called the *fundamental* group of X at x denoted $\pi_1(X,x)$.

12. **Important result:**

 If X is path-connected then for any $x_1, x_2 \in X$, $\pi_1(X, x_1) \simeq \pi_2(X, x_2)$, and in this case we omit the base point and denote simply $\pi_1(X)$.

13. **Some examples:**

 \[
 \pi_1(S^1) = \mathbb{Z}, \\
 \pi_1(\mathbb{R}^n) = 0, \forall n \geq 1.
 \]

14. **Homotopy equivalence of spaces.** X and Y are homotopy equivalent written $X \sim Y$ if there exist maps $f : X \rightarrow Y$ and $g : X \rightarrow Y$ such that $g \circ f \simeq id_X$ and $f \circ g \simeq id_Y$.

15. **Some examples:**

 \[
 \mathbb{R}^n \sim \{0\}. \\
 \mathbb{R}^n - \{0\} \sim S^{n-1}.
 \]

16. **Products.** $\pi_1(X \times Y) = \pi_1(X) \oplus \pi_1(Y)$.

2
III. Important Concepts

Write the definitions of:

17. Differentiable manifolds
 A differentiable manifold M of class C^r and dimension n is a topological space satisfying:

 - M is locally Euclidean, that is, for every point $x \in M$ there exists an open neighborhood U of x and a homeomorphism $\varphi: U \to \varphi(U) \subset \mathbb{R}^n$, called a local chart around x
 - for every pair of local charts (U, φ) and (V, ψ) of M having $U \cap V \neq \emptyset$ the composite

 \[
 \psi \circ \varphi^{-1}|_{\varphi(U \cap V)}: \varphi(U \cap V) \to \psi(U \cap V)
 \]

 is of class C^r. This composite is called a transition function.

 Note 1: It is usual to require in the definition that M have a maximal atlas. That is, one defines the notion of compatible charts and demands that all compatible charts belong to the collection of charts associated to M. This is convenient, as for instance, it follows that any restriction of a local chart to a subset is also part of the atlas. However, given a manifold as we defined above, with any atlas (= a collection of charts that cover M), an application of Zorn’s lemma shows that there exists a unique maximal atlas associated to M.

 Note 2: By smooth manifold we mean a manifold of class C^∞. In this course, all our manifolds will be smooth manifolds.

18. Complex manifolds are manifolds with a finer structure, where instead of local charts to \mathbb{R}^n we require local charts to \mathbb{C}^n and instead of differentiable transition functions we require holomorphic (=analytic) transitions functions. Explicitly,

 A complex manifold M of (complex) dimension n is a topological space satisfying:

 - M is locally complex, that is, for every point $x \in M$ there exists an open neighborhood U of x and a homeomorphism $\varphi: U \to \varphi(U) \subset \mathbb{C}^n$, called a local chart around x
• for every pair of local charts \((U, \varphi)\) and \((V, \psi)\) of \(M\) having \(U \cap V \neq \emptyset\) the composite
\[
\psi \circ \varphi^{-1}|_{\varphi(U \cap V)} : \varphi(U \cap V) \to \psi(U \cap V)
\]
is holomorphic.

19. **Lie Groups** are manifolds having a group structure. That is, a smooth manifold \(M\) is called a **Lie group** if it is endowed with a group operation \(*\) such that the *multiplication* map \((a, b) \to a * b\) and the inverse operation \(x \mapsto x^{-1}\) are continuous with respect to the manifold structure.